Borghetti Brett J, Giametta Joseph J, Rusnock Christina F
Air Force Institute of Technology, Dayton, Ohio.
Hum Factors. 2017 Feb;59(1):134-146. doi: 10.1177/0018720816672308.
We aimed to predict operator workload from neurological data using statistical learning methods to fit neurological-to-state-assessment models.
Adaptive systems require real-time mental workload assessment to perform dynamic task allocations or operator augmentation as workload issues arise. Neuroergonomic measures have great potential for informing adaptive systems, and we combine these measures with models of task demand as well as information about critical events and performance to clarify the inherent ambiguity of interpretation.
We use machine learning algorithms on electroencephalogram (EEG) input to infer operator workload based upon Improved Performance Research Integration Tool workload model estimates.
Cross-participant models predict workload of other participants, statistically distinguishing between 62% of the workload changes. Machine learning models trained from Monte Carlo resampled workload profiles can be used in place of deterministic workload profiles for cross-participant modeling without incurring a significant decrease in machine learning model performance, suggesting that stochastic models can be used when limited training data are available.
We employed a novel temporary scaffold of simulation-generated workload profile truth data during the model-fitting process. A continuous workload profile serves as the target to train our statistical machine learning models. Once trained, the workload profile scaffolding is removed and the trained model is used directly on neurophysiological data in future operator state assessments.
These modeling techniques demonstrate how to use neuroergonomic methods to develop operator state assessments, which can be employed in adaptive systems.
我们旨在使用统计学习方法从神经学数据预测操作员工作量,以拟合神经学与状态评估模型。
自适应系统需要实时心理工作量评估,以便在出现工作量问题时进行动态任务分配或操作员增强。神经工效学措施在为自适应系统提供信息方面具有巨大潜力,我们将这些措施与任务需求模型以及关键事件和绩效信息相结合,以澄清解释中固有的模糊性。
我们对脑电图(EEG)输入使用机器学习算法,根据改进的绩效研究整合工具工作量模型估计来推断操作员工作量。
跨参与者模型可预测其他参与者的工作量,在62%的工作量变化之间进行统计学区分。从蒙特卡洛重采样工作量概况训练的机器学习模型可用于跨参与者建模,以替代确定性工作量概况,而不会导致机器学习模型性能显著下降,这表明在可用训练数据有限时可使用随机模型。
我们在模型拟合过程中采用了一种由模拟生成的工作量概况真实数据构成的新型临时框架。连续的工作量概况用作训练我们的统计机器学习模型的目标。一旦训练完成,就移除工作量概况框架,并且在未来的操作员状态评估中直接将训练好的模型用于神经生理数据。
这些建模技术展示了如何使用神经工效学方法来开发操作员状态评估,可将其应用于自适应系统。