Suppr超能文献

变量承诺在命名游戏对共识形成的影响。

The impact of variable commitment in the Naming Game on consensus formation.

机构信息

Rensselaer Polytechnic Institute, Social Cognitive Networks Academic Research Center, Troy, NY, 12180, USA.

Rensselaer Polytechnic Institute, Department of Computer Science, Troy, NY, 12180, USA.

出版信息

Sci Rep. 2017 Feb 2;7:41750. doi: 10.1038/srep41750.

Abstract

The Naming Game has proven to be an important model of opinion dynamics in complex networks. It is significantly enriched by the introduction of nodes committed to a single opinion. The resulting model is still simple but captures core concepts of opinion dynamics in networks. This model limitation is rigid commitment which never changes. Here we study the effect that making commitment variable has on the dynamics of the system. Committed nodes are assigned a commitment strength, w, defining their willingness to lose (in waning), gain (for increasing) or both (in variable) commitment to an opinion. Such model has committed nodes that can stick to a single opinion for some time without losing their flexibility to change it in the long run. The traditional Naming Game corresponds to setting w at infinity. A change in commitment strength impacts the critical fraction of population necessary for a minority consensus. Increasing w lowers critical fraction for waning commitment but increases this fraction for increasing commitment. Further, we show that if different nodes have different values of w, higher standard deviation of w increases the critical fraction for waning commitment and decrease this fraction for increasing commitment.

摘要

命名游戏已被证明是复杂网络中意见动态的重要模型。通过引入致力于单一观点的节点,它得到了极大的丰富。由此产生的模型仍然很简单,但它捕捉到了网络中意见动态的核心概念。这种模型的局限性在于承诺是固定的,永远不会改变。在这里,我们研究了使承诺具有可变性对系统动态的影响。承诺节点被赋予一个承诺强度 w,定义了他们愿意失去(在减弱)、获得(用于增加)或两者(在变量)对意见的承诺。这种模型具有承诺节点,它们可以在一段时间内坚持单一观点,而不会丧失其长期改变观点的灵活性。传统的命名游戏对应于将 w 设置为无穷大。承诺强度的变化会影响到少数派共识所需的人口临界分数。增加 w 会降低减弱承诺的临界分数,但会增加增加承诺的临界分数。此外,我们还表明,如果不同的节点具有不同的 w 值,那么 w 的标准差越高,减弱承诺的临界分数就越高,而增加承诺的临界分数就越低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06a9/5288711/fa7686e002a2/srep41750-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验