Departments of Radiology and Medicine (Biomedical Informatics Research), Stanford University, Stanford, CA, USA.
Department of Radiology and, by courtesy, Orthopedic Surgery, Stanford University, Stanford, CA, USA.
Med Image Anal. 2017 Apr;37:46-55. doi: 10.1016/j.media.2017.01.002. Epub 2017 Jan 13.
We propose a novel method, the adaptive local window, for improving level set segmentation technique. The window is estimated separately for each contour point, over iterations of the segmentation process, and for each individual object. Our method considers the object scale, the spatial texture, and the changes of the energy functional over iterations. Global and local statistics are considered by calculating several gray level co-occurrence matrices. We demonstrate the capabilities of the method in the domain of medical imaging for segmenting 233 images with liver lesions. To illustrate the strength of our method, those lesions were screened by either Computed Tomography or Magnetic Resonance Imaging. Moreover, we analyzed images using three different energy models. We compared our method to a global level set segmentation, to a local framework that uses predefined fixed-size square windows and to a local region-scalable fitting model. The results indicate that our proposed method outperforms the other methods in terms of agreement with the manual marking and dependence on contour initialization or the energy model used. In case of complex lesions, such as low contrast lesions, heterogeneous lesions, or lesions with a noisy background, our method shows significantly better segmentation with an improvement of 0.25 ± 0.13 in Dice similarity coefficient, compared with state of the art fixed-size local windows (Wilcoxon, p < 0.001).
我们提出了一种新的方法,自适应局部窗口,用于改进水平集分割技术。该窗口在分割过程的迭代中,针对每个轮廓点和每个单独的对象进行单独估计。我们的方法考虑了对象的尺度、空间纹理以及能量函数随迭代的变化。通过计算多个灰度共生矩阵来考虑全局和局部统计信息。我们在医学成像领域中展示了该方法的能力,用于分割 233 张肝脏病变图像。为了说明我们方法的优势,这些病变是通过计算机断层扫描或磁共振成像进行筛选的。此外,我们使用了三种不同的能量模型来分析图像。我们将我们的方法与全局水平集分割、使用预定义固定大小正方形窗口的局部框架以及局部区域可伸缩拟合模型进行了比较。结果表明,我们提出的方法在与手动标记的一致性以及对轮廓初始化或使用的能量模型的依赖性方面优于其他方法。在复杂病变的情况下,例如低对比度病变、异质性病变或有噪声背景的病变,我们的方法在 Dice 相似系数方面显示出明显更好的分割效果,与最先进的固定大小局部窗口相比提高了 0.25 ± 0.13(Wilcoxon,p < 0.001)。