Suppr超能文献

微流成像分析反映聚集体形成机制:使用库尔贝克-莱布勒散度比较蛋白质颗粒数据集。

Microflow Imaging Analyses Reflect Mechanisms of Aggregate Formation: Comparing Protein Particle Data Sets Using the Kullback-Leibler Divergence.

作者信息

Maddux Nathaniel R, Daniels Austin L, Randolph Theodore W

机构信息

Center for Pharmaceutical Biotechnology, Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309-0596.

Center for Pharmaceutical Biotechnology, Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309-0596.

出版信息

J Pharm Sci. 2017 May;106(5):1239-1248. doi: 10.1016/j.xphs.2017.01.030. Epub 2017 Feb 1.

Abstract

Subvisible particles in therapeutic protein formulations are an increasing manufacturing and regulatory concern because of their potential to cause adverse immune responses. Flow imaging microscopy is used extensively to detect subvisible particles and investigate product deviations, typically by comparing imaging data using histograms of particle descriptors. Such an approach discards much information and requires effort to interpret differences, which is problematic when comparing many data sets. We propose to compare imaging data using the Kullback-Leibler divergence, an information theoretic measure of the difference of distributions (Kullback S, Leibler RA. 1951. Ann Math Stat. 22:79-86). We use the divergence to generate scatter plots representing the similarity between data sets and to classify new data into previously determined categories. Our approach is multidimensional, automated, and less biased than traditional techniques. We demonstrate the method with FlowCAM® imagery of protein aggregates acquired from monoclonal antibody samples subjected to different stresses. The method succeeds in classifying aggregated samples by stress condition and, once trained, is able to identify the stress that caused aggregate formation in new samples. In addition to potentially detecting subtle incipient manufacturing faults, the method may have applications to verification of product uniformity after manufacturing changes, identification of counterfeit products, and development of closely matching bio-similar products.

摘要

治疗性蛋白质制剂中的亚可见颗粒因其可能引发不良免疫反应,日益成为生产制造和监管方面关注的问题。流动成像显微镜被广泛用于检测亚可见颗粒并调查产品偏差,通常是通过使用颗粒描述符的直方图比较成像数据来实现。这种方法会丢弃大量信息,并且需要费力去解释差异,在比较多个数据集时这会带来问题。我们建议使用库尔贝克-莱布勒散度来比较成像数据,库尔贝克-莱布勒散度是一种衡量分布差异的信息论度量(库尔贝克S,莱布勒RA。1951年。《数理统计年鉴》。22:79 - 86)。我们使用该散度生成表示数据集之间相似性的散点图,并将新数据分类到先前确定的类别中。我们的方法是多维度的、自动化的,并且比传统技术偏差更小。我们用从经受不同应力的单克隆抗体样品中获取的蛋白质聚集体的FlowCAM®图像来演示该方法。该方法成功地按应力条件对聚集样品进行了分类,并且一旦经过训练,能够识别出新样品中导致聚集体形成的应力。除了有可能检测到细微的初期生产缺陷外,该方法还可能应用于制造变更后产品均匀性的验证、假冒产品的识别以及紧密匹配的生物类似产品的开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验