González-Inchauspe Carlota, Urbano Francisco J, Di Guilmi Mariano N, Uchitel Osvaldo D
Instituto de Fisiología, Biología molecular y Neurociencias, Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado," Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Beunos Aires, CP 1428 EGA Argentina.
Instituto de Fisiología, Biología molecular y Neurociencias, Departamento de Fisiología, Biología Molecular y Celular "Dr. Héctor Maldonado," Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Beunos Aires, CP 1428 EGA Argentina
J Neurosci. 2017 Mar 8;37(10):2589-2599. doi: 10.1523/JNEUROSCI.2566-16.2017. Epub 2017 Feb 3.
Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in neurodegenerative diseases. We found that these channels can be activated in neurons of the medial nucleus of the trapezoid body (MNTB) of the auditory system in the CNS. A drop in extracellular pH induces transient inward ASIC currents (Is) in postsynaptic MNTB neurons from wild-type mice. The inhibition of Is by psalmotoxin-1 (PcTx1) and the absence of these currents in knock-out mice for ASIC-1a subunit (ASIC1a) suggest that homomeric ASIC-1as are mediating these currents in MNTB neurons. Furthermore, we detect ASIC1a-dependent currents during synaptic transmission, suggesting an acidification of the synaptic cleft due to the corelease of neurotransmitter and H from synaptic vesicles. These currents are capable of eliciting action potentials in the absence of glutamatergic currents. A significant characteristic of these homomeric ASIC-1as is their permeability to Ca Activation of ASIC-1a in MNTB neurons by exogenous H induces an increase in intracellular Ca Furthermore, the activation of postsynaptic ASIC-1as during high-frequency stimulation (HFS) of the presynaptic nerve terminal leads to a PcTx1-sensitive increase in intracellular Ca in MNTB neurons, which is independent of glutamate receptors and is absent in neurons from ASIC1a mice. During HFS, the lack of functional ASICs in synaptic transmission results in an enhanced short-term depression of glutamatergic EPSCs. These results strongly support the hypothesis of protons as neurotransmitters and demonstrate that presynaptic released protons modulate synaptic transmission by activating ASIC-1as at the calyx of Held-MNTB synapse. The manuscript demonstrates that postsynaptic neurons of the medial nucleus of the trapezoid body at the mouse calyx of Held synapse express functional homomeric Acid-sensing ion channel-1a (ASIC-1as) that can be activated by protons (coreleased with neurotransmitter from acidified synaptic vesicles). These ASIC-1as contribute to the generation of postsynaptic currents and, more relevant, to calcium influx, which could be involved in the modulation of presynaptic transmitter release. Inhibition or deletion of ASIC-1a leads to enhanced short-term depression, demonstrating that they are concerned with short-term plasticity of the synapse. ASICs represent a widespread communication system with unique properties. We expect that our experiments will have an impact in the neurobiology field and will spread in areas related to neuronal plasticity.
酸敏感离子通道(ASICs)调节突触活动,并在神经退行性疾病中发挥重要作用。我们发现这些通道可在中枢神经系统听觉系统的梯形体内侧核(MNTB)的神经元中被激活。细胞外pH值下降会在野生型小鼠的突触后MNTB神经元中诱导短暂的内向ASIC电流(Is)。毒蜘蛛毒素-1(PcTx1)对Is的抑制作用以及ASIC-1a亚基基因敲除小鼠中这些电流的缺失表明,同聚体ASIC-1a介导了MNTB神经元中的这些电流。此外,我们在突触传递过程中检测到了ASIC1a依赖性电流,这表明由于神经递质和来自突触小泡的H+共同释放,突触间隙发生了酸化。这些电流能够在没有谷氨酸能电流的情况下引发动作电位。这些同聚体ASIC-1a的一个显著特征是它们对Ca2+具有通透性。外源性H+激活MNTB神经元中的ASIC-1a会导致细胞内Ca2+增加。此外,突触前神经末梢高频刺激(HFS)期间突触后ASIC-1a的激活会导致MNTB神经元细胞内Ca2+的PcTx1敏感增加,这与谷氨酸受体无关,且在ASIC1a基因敲除小鼠的神经元中不存在。在HFS期间,突触传递中功能性ASICs的缺失会导致谷氨酸能兴奋性突触后电流(EPSCs)的短期抑制增强。这些结果有力地支持了质子作为神经递质的假说,并证明突触前释放的质子通过激活Held壶腹-MNTB突触处的ASIC-1a来调节突触传递。该论文表明,小鼠Held壶腹突触处梯形体内侧核的突触后神经元表达功能性同聚体酸敏感离子通道-1a(ASIC-1a),其可被质子(与神经递质从酸化的突触小泡中共同释放)激活。这些ASIC-1a有助于突触后电流的产生,更重要的是,有助于钙内流,这可能参与突触前递质释放的调节。ASIC-1a的抑制或缺失会导致短期抑制增强,表明它们与突触的短期可塑性有关。ASICs代表了一个具有独特性质的广泛的通讯系统。我们期望我们的实验将对神经生物学领域产生影响,并将在与神经元可塑性相关的领域传播开来。