Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.
Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.
Nat Nanotechnol. 2017 Feb 7;12(2):106-117. doi: 10.1038/nnano.2016.301.
The characteristic blue glow of Cerenkov luminescence (CL) arises from the interaction between a charged particle travelling faster than the phase velocity of light and a dielectric medium, such as water or tissue. As CL emanates from a variety of sources, such as cosmic events, particle accelerators, nuclear reactors and clinical radionuclides, it has been used in applications such as particle detection, dosimetry, and medical imaging and therapy. The combination of CL and nanoparticles for biomedicine has improved diagnosis and therapy, especially in oncological research. Although radioactive decay itself cannot be easily modulated, the associated CL can be through the use of nanoparticles, thus offering new applications in biomedical research. Advances in nanoparticles, metamaterials and photonic crystals have also yielded new behaviours of CL. Here, we review the physics behind Cerenkov luminescence and associated applications in biomedicine. We also show that by combining advances in nanotechnology and materials science with CL, new avenues for basic and applied sciences have opened.
切伦科夫辐射(Cerenkov luminescence,CL)的特征蓝光源于比光的相速度更快的带电粒子与介电质(如水或组织)之间的相互作用。由于 CL 源自各种来源,如宇宙事件、粒子加速器、核反应堆和临床放射性核素,因此它已被用于粒子探测、剂量测定以及医学成像和治疗等应用中。CL 与纳米粒子在生物医学中的结合改善了诊断和治疗,特别是在肿瘤学研究中。尽管放射性衰变本身不易调节,但相关的 CL 可以通过使用纳米粒子来实现,从而为生物医学研究提供新的应用。纳米粒子、超材料和光子晶体的进步也产生了 CL 的新行为。在这里,我们回顾了切伦科夫辐射背后的物理学以及其在生物医学中的相关应用。我们还表明,通过将纳米技术和材料科学的进步与 CL 相结合,为基础科学和应用科学开辟了新的途径。