Kajisa Taira, Sakata Toshiya
PROVIGATE Inc., Department of Research and Development , Tokyo , Japan.
Department of Materials Science and Engineering, Graduate School of Engineering, The University of Tokyo , Tokyo , Japan.
Sci Technol Adv Mater. 2017 Jan 9;18(1):26-33. doi: 10.1080/14686996.2016.1257344. eCollection 2017.
In this paper, we propose a highly sensitive and biocompatible glucose sensor using a semiconductor-based field effect transistor (FET) with a functionalized hydrogel. The principle of the FET device contributes to the easy detection of ionic charges with high sensitivity, and the hydrogel coated on the electrode enables the specific detection of glucose with biocompatibility. The copolymerized hydrogel on the Au gate electrode of the FET device is optimized by controlling the mixture ratio of biocompatible 2-hydroxyethylmethacrylate (HEMA) as the main monomer and vinylphenylboronic acid (VPBA) as a glucose-responsive monomer. The gate surface potential of the hydrogel FETs shifts in the negative direction with increasing glucose concentration from 10 μM to 40 mM, which results from the increase in the negative charges on the basis of the diol-binding of PBA derivatives with glucose molecules in the hydrogel. Moreover, the hydrogel coated on the gate suppresses the signal noise caused by the nonspecific adsorption of proteins such as albumin. The hydrogel FET can serve as a highly sensitive and biocompatible glucose sensor in or applications such as eye contact lenses and sheets adhering to the skin.
在本文中,我们提出了一种高灵敏度且生物相容性良好的葡萄糖传感器,它采用了带有功能化水凝胶的基于半导体的场效应晶体管(FET)。FET器件的原理有助于以高灵敏度轻松检测离子电荷,并且涂覆在电极上的水凝胶能够实现对葡萄糖的特异性检测,同时具备生物相容性。通过控制作为主要单体的生物相容性甲基丙烯酸2 - 羟乙酯(HEMA)与作为葡萄糖响应单体的乙烯基苯硼酸(VPBA)的混合比例,对FET器件金栅电极上的共聚水凝胶进行了优化。随着葡萄糖浓度从10 μM增加到40 mM,水凝胶FET的栅极表面电位向负方向移动,这是由于水凝胶中PBA衍生物与葡萄糖分子的二醇结合导致负电荷增加所致。此外,涂覆在栅极上的水凝胶抑制了由白蛋白等蛋白质的非特异性吸附引起的信号噪声。这种水凝胶FET可作为一种高灵敏度且生物相容性良好的葡萄糖传感器,用于眼用隐形眼镜和贴于皮肤上的薄片等体内或体外应用。