Suppr超能文献

基于共生的交替学习多群体粒子群优化算法

Symbiosis-Based Alternative Learning Multi-Swarm Particle Swarm Optimization.

作者信息

Niu Ben, Huang Huali, Tan Lijing, Duan Qiqi

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2017 Jan-Feb;14(1):4-14. doi: 10.1109/TCBB.2015.2459690.

Abstract

Inspired by the ideas from the mutual cooperation of symbiosis in natural ecosystem, this paper proposes a new variant of PSO, named Symbiosis-based Alternative Learning Multi-swarm Particle Swarm Optimization (SALMPSO). A learning probability to select one exemplar out of the center positions, the local best position, and the historical best position including the experience of internal and external multiple swarms, is used to keep the diversity of the population. Two different levels of social interaction within and between multiple swarms are proposed. In the search process, particles not only exchange social experience with others that are from their own sub-swarms, but also are influenced by the experience of particles from other fellow sub-swarms. According to the different exemplars and learning strategy, this model is instantiated as four variants of SALMPSO and a set of 15 test functions are conducted to compare with some variants of PSO including 10, 30 and 50 dimensions, respectively. Experimental results demonstrate that the alternative learning strategy in each SALMPSO version can exhibit better performance in terms of the convergence speed and optimal values on most multimodal functions in our simulation.

摘要

受自然生态系统中共生互利合作理念的启发,本文提出了一种新的粒子群优化算法变体,即基于共生的交替学习多群粒子群优化算法(SALMPSO)。通过一个学习概率从中心位置、局部最优位置以及包含内部和外部多个群体经验的历史最优位置中选择一个范例,以保持种群的多样性。提出了多群体内部和之间两种不同层次的社会交互方式。在搜索过程中,粒子不仅与来自自身子群体的其他粒子交换社会经验,还受到来自其他同类子群体粒子经验的影响。根据不同的范例和学习策略,该模型被实例化为SALMPSO的四个变体,并使用一组15个测试函数分别与包括10维、30维和50维的一些粒子群优化算法变体进行比较。实验结果表明,在我们的模拟中,每个SALMPSO版本中的交替学习策略在大多数多峰函数的收敛速度和最优值方面都能表现出更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验