Suppr超能文献

通过整合转录组数据识别疾病阶段进展中的表达模式。

Identification of expression patterns in the progression of disease stages by integration of transcriptomic data.

作者信息

Aibar Sara, Abaigar Maria, Campos-Laborie Francisco Jose, Sánchez-Santos Jose Manuel, Hernandez-Rivas Jesus M, De Las Rivas Javier

机构信息

Bioinformatics and Functional Genomics research group, Cancer Research Center (IMBCC, CSIC/USAL) and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.

Unidad de Diagnóstico Molecular y Celular del Cáncer, Cancer Research Center (IMBCC, CSIC/USAL) and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.

出版信息

BMC Bioinformatics. 2016 Nov 22;17(Suppl 15):432. doi: 10.1186/s12859-016-1290-4.

Abstract

BACKGROUND

In the study of complex diseases using genome-wide expression data from clinical samples, a difficult case is the identification and mapping of the gene signatures associated to the stages that occur in the progression of a disease. The stages usually correspond to different subtypes or classes of the disease, and the difficulty to identify them often comes from patient heterogeneity and sample variability that can hide the biomedical relevant changes that characterize each stage, making standard differential analysis inadequate or inefficient.

RESULTS

We propose a methodology to study diseases or disease stages ordered in a sequential manner (e.g. from early stages with good prognosis to more acute or serious stages associated to poor prognosis). The methodology is applied to diseases that have been studied obtaining genome-wide expression profiling of cohorts of patients at different stages. The approach allows searching for consistent expression patterns along the progression of the disease through two major steps: (i) identifying genes with increasing or decreasing trends in the progression of the disease; (ii) clustering the increasing/decreasing gene expression patterns using an unsupervised approach to reveal whether there are consistent patterns and find genes altered at specific disease stages. The first step is carried out using Gamma rank correlation to identify genes whose expression correlates with a categorical variable that represents the stages of the disease. The second step is done using a Self Organizing Map (SOM) to cluster the genes according to their progressive profiles and identify specific patterns. Both steps are done after normalization of the genomic data to allow the integration of multiple independent datasets. In order to validate the results and evaluate their consistency and biological relevance, the methodology is applied to datasets of three different diseases: myelodysplastic syndrome, colorectal cancer and Alzheimer's disease. A software script written in R, named genediseasePatterns, is provided to allow the use and application of the methodology.

CONCLUSION

The method presented allows the analysis of the progression of complex and heterogeneous diseases that can be divided in pathological stages. It identifies gene groups whose expression patterns change along the advance of the disease, and it can be applied to different types of genomic data studying cohorts of patients in different states.

摘要

背景

在利用临床样本的全基因组表达数据研究复杂疾病时,一个难题是识别和定位与疾病进展过程中各阶段相关的基因特征。这些阶段通常对应于疾病的不同亚型或类别,而识别它们的困难往往源于患者的异质性和样本的变异性,这可能会掩盖表征每个阶段的生物医学相关变化,使得标准的差异分析不充分或效率低下。

结果

我们提出了一种方法来研究以连续方式排序的疾病或疾病阶段(例如,从预后良好的早期阶段到与预后不良相关的更急性或严重阶段)。该方法应用于已对不同阶段患者队列进行全基因组表达谱分析的疾病研究。该方法通过两个主要步骤来寻找疾病进展过程中一致的表达模式:(i)识别在疾病进展过程中表达呈上升或下降趋势的基因;(ii)使用无监督方法对上升/下降的基因表达模式进行聚类,以揭示是否存在一致的模式,并找到在特定疾病阶段发生改变的基因。第一步使用伽马秩相关来识别其表达与代表疾病阶段的分类变量相关的基因。第二步使用自组织映射(SOM)根据基因的渐进谱对基因进行聚类,并识别特定模式。这两个步骤均在对基因组数据进行归一化之后进行,以允许整合多个独立数据集。为了验证结果并评估其一致性和生物学相关性,该方法应用于三种不同疾病的数据集:骨髓增生异常综合征、结直肠癌和阿尔茨海默病。提供了一个用R编写的名为genediseasePatterns的软件脚本,以允许使用和应用该方法。

结论

所提出的方法允许分析可分为病理阶段的复杂和异质性疾病的进展。它识别出其表达模式随疾病进展而变化的基因组,并且可以应用于研究不同状态患者队列的不同类型的基因组数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ea/5133487/773ef01ef3a6/12859_2016_1290_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验