Suppr超能文献

一种改进的FSL-FIRST管道,用于皮质下灰质分割,以使用定量磁化率映射(QSM)研究异常脑解剖结构。

An improved FSL-FIRST pipeline for subcortical gray matter segmentation to study abnormal brain anatomy using quantitative susceptibility mapping (QSM).

作者信息

Feng Xiang, Deistung Andreas, Dwyer Michael G, Hagemeier Jesper, Polak Paul, Lebenberg Jessica, Frouin Frédérique, Zivadinov Robert, Reichenbach Jürgen R, Schweser Ferdinand

机构信息

Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany.

Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany; Section of Experimental Neurology, Department of Neurology, Essen University Hospital, Essen, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany.

出版信息

Magn Reson Imaging. 2017 Jun;39:110-122. doi: 10.1016/j.mri.2017.02.002. Epub 2017 Feb 7.

Abstract

Accurate and robust segmentation of subcortical gray matter (SGM) nuclei is required in many neuroimaging applications. FMRIB's Integrated Registration and Segmentation Tool (FIRST) is one of the most popular software tools for automated subcortical segmentation based on T-weighted (T1w) images. In this work, we demonstrate that FIRST tends to produce inaccurate SGM segmentation results in the case of abnormal brain anatomy, such as present in atrophied brains, due to a poor spatial match of the subcortical structures with the training data in the MNI space as well as due to insufficient contrast of SGM structures on T1w images. Consequently, such deviations from the average brain anatomy may introduce analysis bias in clinical studies, which may not always be obvious and potentially remain unidentified. To improve the segmentation of subcortical nuclei, we propose to use FIRST in combination with a special Hybrid image Contrast (HC) and Non-Linear (nl) registration module (HC-nlFIRST), where the hybrid image contrast is derived from T1w images and magnetic susceptibility maps to create subcortical contrast that is similar to that in the Montreal Neurological Institute (MNI) template. In our approach, a nonlinear registration replaces FIRST's default linear registration, yielding a more accurate alignment of the input data to the MNI template. We evaluated our method on 82 subjects with particularly abnormal brain anatomy, selected from a database of >2000 clinical cases. Qualitative and quantitative analyses revealed that HC-nlFIRST provides improved segmentation compared to the default FIRST method.

摘要

在许多神经成像应用中,需要对皮质下灰质(SGM)核进行准确且稳健的分割。FMRIB的综合注册与分割工具(FIRST)是基于T加权(T1w)图像进行自动皮质下分割最流行的软件工具之一。在这项工作中,我们证明,在大脑解剖结构异常的情况下,如萎缩性大脑,FIRST往往会产生不准确的SGM分割结果,这是由于皮质下结构与MNI空间中的训练数据空间匹配不佳,以及T1w图像上SGM结构的对比度不足所致。因此,这种与平均大脑解剖结构的偏差可能会在临床研究中引入分析偏差,而这种偏差可能并不总是明显的,并且可能一直未被识别。为了改进皮质下核的分割,我们建议将FIRST与一个特殊的混合图像对比度(HC)和非线性(nl)注册模块(HC-nlFIRST)结合使用,其中混合图像对比度是从T1w图像和磁敏感性图中导出的,以创建与蒙特利尔神经病学研究所(MNI)模板中类似的皮质下对比度。在我们的方法中,非线性注册取代了FIRST的默认线性注册,从而使输入数据与MNI模板的对齐更加准确。我们从一个超过2000个临床病例的数据库中选择了82名大脑解剖结构特别异常的受试者,对我们的方法进行了评估。定性和定量分析表明,与默认的FIRST方法相比,HC-nlFIRST提供了改进的分割效果。

相似文献

2
Multi-atlas tool for automated segmentation of brain gray matter nuclei and quantification of their magnetic susceptibility.
Neuroimage. 2019 May 1;191:337-349. doi: 10.1016/j.neuroimage.2019.02.016. Epub 2019 Feb 7.
7
Fusion of quantitative susceptibility maps and T1-weighted images improve brain tissue contrast in primates.
Neuroimage. 2022 Dec 1;264:119730. doi: 10.1016/j.neuroimage.2022.119730. Epub 2022 Nov 2.
8
Fully-integrated framework for the segmentation and registration of the spinal cord white and gray matter.
Neuroimage. 2017 Apr 15;150:358-372. doi: 10.1016/j.neuroimage.2016.09.026. Epub 2016 Sep 20.

引用本文的文献

2
"Back to Braak": Role of Nucleus Reuniens and Subcortical Pathways in Alzheimer's Disease Progression.
J Prev Alzheimers Dis. 2024;11(4):1030-1040. doi: 10.14283/jpad.2024.42.
4
Convergent imaging-transcriptomic evidence for disturbed iron homeostasis in Gilles de la Tourette syndrome.
medRxiv. 2023 May 16:2023.05.15.23289978. doi: 10.1101/2023.05.15.23289978.
5
In vivo multi-parameter mapping of the habenula using MRI.
Sci Rep. 2023 Mar 7;13(1):3754. doi: 10.1038/s41598-023-28446-x.
6
DBSegment: Fast and robust segmentation of deep brain structures considering domain generalization.
Hum Brain Mapp. 2023 Feb 1;44(2):762-778. doi: 10.1002/hbm.26097. Epub 2022 Oct 17.
7
A Preliminary Study of Alterations in Iron Disposal and Neural Activity in Ischemic Stroke.
Biomed Res Int. 2022 Aug 6;2022:4552568. doi: 10.1155/2022/4552568. eCollection 2022.
9
Decreasing brain iron in multiple sclerosis: The difference between concentration and content in iron MRI.
Hum Brain Mapp. 2021 Apr 1;42(5):1463-1474. doi: 10.1002/hbm.25306. Epub 2020 Dec 30.
10
Magnetic susceptibility imaging of human habenula at 3 T.
Sci Rep. 2020 Nov 9;10(1):19357. doi: 10.1038/s41598-020-75733-y.

本文引用的文献

1
Overview of quantitative susceptibility mapping.
NMR Biomed. 2017 Apr;30(4). doi: 10.1002/nbm.3569. Epub 2016 Jul 19.
3
Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM).
Z Med Phys. 2016 Mar;26(1):6-34. doi: 10.1016/j.zemedi.2015.10.002. Epub 2015 Dec 15.
4
Automatic segmentation of the striatum and globus pallidus using MIST: Multimodal Image Segmentation Tool.
Neuroimage. 2016 Jan 15;125:479-497. doi: 10.1016/j.neuroimage.2015.10.013. Epub 2015 Oct 19.
5
Age and sex related differences in subcortical brain iron concentrations among healthy adults.
Neuroimage. 2015 Nov 15;122:385-98. doi: 10.1016/j.neuroimage.2015.07.050. Epub 2015 Jul 26.
9
Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain.
J Magn Reson Imaging. 2015 Jul;42(1):23-41. doi: 10.1002/jmri.24768. Epub 2014 Oct 1.
10
Quantitative susceptibility mapping: current status and future directions.
Magn Reson Imaging. 2015 Jan;33(1):1-25. doi: 10.1016/j.mri.2014.09.004. Epub 2014 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验