Feng Xiang, Deistung Andreas, Dwyer Michael G, Hagemeier Jesper, Polak Paul, Lebenberg Jessica, Frouin Frédérique, Zivadinov Robert, Reichenbach Jürgen R, Schweser Ferdinand
Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany.
Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany; Section of Experimental Neurology, Department of Neurology, Essen University Hospital, Essen, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany.
Magn Reson Imaging. 2017 Jun;39:110-122. doi: 10.1016/j.mri.2017.02.002. Epub 2017 Feb 7.
Accurate and robust segmentation of subcortical gray matter (SGM) nuclei is required in many neuroimaging applications. FMRIB's Integrated Registration and Segmentation Tool (FIRST) is one of the most popular software tools for automated subcortical segmentation based on T-weighted (T1w) images. In this work, we demonstrate that FIRST tends to produce inaccurate SGM segmentation results in the case of abnormal brain anatomy, such as present in atrophied brains, due to a poor spatial match of the subcortical structures with the training data in the MNI space as well as due to insufficient contrast of SGM structures on T1w images. Consequently, such deviations from the average brain anatomy may introduce analysis bias in clinical studies, which may not always be obvious and potentially remain unidentified. To improve the segmentation of subcortical nuclei, we propose to use FIRST in combination with a special Hybrid image Contrast (HC) and Non-Linear (nl) registration module (HC-nlFIRST), where the hybrid image contrast is derived from T1w images and magnetic susceptibility maps to create subcortical contrast that is similar to that in the Montreal Neurological Institute (MNI) template. In our approach, a nonlinear registration replaces FIRST's default linear registration, yielding a more accurate alignment of the input data to the MNI template. We evaluated our method on 82 subjects with particularly abnormal brain anatomy, selected from a database of >2000 clinical cases. Qualitative and quantitative analyses revealed that HC-nlFIRST provides improved segmentation compared to the default FIRST method.
在许多神经成像应用中,需要对皮质下灰质(SGM)核进行准确且稳健的分割。FMRIB的综合注册与分割工具(FIRST)是基于T加权(T1w)图像进行自动皮质下分割最流行的软件工具之一。在这项工作中,我们证明,在大脑解剖结构异常的情况下,如萎缩性大脑,FIRST往往会产生不准确的SGM分割结果,这是由于皮质下结构与MNI空间中的训练数据空间匹配不佳,以及T1w图像上SGM结构的对比度不足所致。因此,这种与平均大脑解剖结构的偏差可能会在临床研究中引入分析偏差,而这种偏差可能并不总是明显的,并且可能一直未被识别。为了改进皮质下核的分割,我们建议将FIRST与一个特殊的混合图像对比度(HC)和非线性(nl)注册模块(HC-nlFIRST)结合使用,其中混合图像对比度是从T1w图像和磁敏感性图中导出的,以创建与蒙特利尔神经病学研究所(MNI)模板中类似的皮质下对比度。在我们的方法中,非线性注册取代了FIRST的默认线性注册,从而使输入数据与MNI模板的对齐更加准确。我们从一个超过2000个临床病例的数据库中选择了82名大脑解剖结构特别异常的受试者,对我们的方法进行了评估。定性和定量分析表明,与默认的FIRST方法相比,HC-nlFIRST提供了改进的分割效果。