Suppr超能文献

大量碳氢化合物和水的核磁共振弛豫与扩散的分子动力学模拟

Molecular dynamics simulations of NMR relaxation and diffusion of bulk hydrocarbons and water.

作者信息

Singer Philip M, Asthagiri Dilip, Chapman Walter G, Hirasaki George J

机构信息

Rice University, Department of Chemical and Biomolecular Engineering, 6100 Main St., Houston, TX 77005, USA.

Rice University, Department of Chemical and Biomolecular Engineering, 6100 Main St., Houston, TX 77005, USA.

出版信息

J Magn Reson. 2017 Apr;277:15-24. doi: 10.1016/j.jmr.2017.02.001. Epub 2017 Feb 3.

Abstract

Molecular dynamics (MD) simulations are used to investigate H nuclear magnetic resonance (NMR) relaxation and diffusion of bulk n-CH to n-CH hydrocarbons and bulk water. The MD simulations of the H NMR relaxation times T in the fast motion regime where T=T agree with measured (de-oxygenated) T data at ambient conditions, without any adjustable parameters in the interpretation of the simulation data. Likewise, the translational diffusion D coefficients calculated using simulation configurations agree with measured diffusion data at ambient conditions. The agreement between the predicted and experimentally measured NMR relaxation times and diffusion coefficient also validate the forcefields used in the simulation. The molecular simulations naturally separate intramolecular from intermolecular dipole-dipole interactions helping bring new insight into the two NMR relaxation mechanisms as a function of molecular chain-length (i.e. carbon number). Comparison of the MD simulation results of the two relaxation mechanisms with traditional hard-sphere models used in interpreting NMR data reveals important limitations in the latter. With increasing chain length, there is substantial deviation in the molecular size inferred on the basis of the radius of gyration from simulation and the fitted hard-sphere radii required to rationalize the relaxation times. This deviation is characteristic of the local nature of the NMR measurement, one that is well-captured by molecular simulations.

摘要

分子动力学(MD)模拟用于研究正己烷到正癸烷的本体烃以及本体水的氢核磁共振(NMR)弛豫和扩散。在快速运动区域(其中(T_1=T_2))对氢NMR弛豫时间(T_1)和(T_2)的MD模拟与在环境条件下测得的(脱氧)(T_1)和(T_2)数据一致,在模拟数据解释中无需任何可调参数。同样,使用模拟构型计算的平移扩散系数(D)与在环境条件下测得的扩散数据一致。预测的和实验测量的NMR弛豫时间以及扩散系数之间的一致性也验证了模拟中使用的力场。分子模拟自然地将分子内偶极 - 偶极相互作用与分子间偶极 - 偶极相互作用区分开来,有助于深入了解这两种作为分子链长(即碳原子数)函数的NMR弛豫机制。将这两种弛豫机制的MD模拟结果与用于解释NMR数据的传统硬球模型进行比较,揭示了后者存在的重要局限性。随着链长增加,基于模拟的回转半径推断的分子大小与合理化弛豫时间所需的拟合硬球半径之间存在显著偏差。这种偏差是NMR测量局部性质的特征,分子模拟能很好地捕捉到这一点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验