Suppr超能文献

用于电化学细胞芯片的工程化肽基纳米生物材料。

Engineered peptide-based nanobiomaterials for electrochemical cell chip.

作者信息

Kafi Md Abdul, Cho Hyeon-Yeol, Choi Jeong-Woo

机构信息

Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensigh, 2202 Bangladesh ; Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107 South Korea.

Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107 South Korea.

出版信息

Nano Converg. 2016;3(1):17. doi: 10.1186/s40580-016-0077-7. Epub 2016 Jul 25.

Abstract

Biomaterials having cell adhesion ability are considered to be integral part of a cell chip. A number of researches have been carried out to search for a suitable material for effective immobilization of cell on substrate. Engineered ECM materials or their components like collagen, Poly-l-Lysine (PLL), Arg-Gly-Asp (RGD) peptide have been extensively used for mammalian cell adhesion and proliferation with the aim of tissue regeneration or cell based sensing application. This review focuses on the various approaches for two- and three-dimensionally patterned nanostructures of a short peptide i.e. RGD peptide on chip surfaces together with their effects on cell behaviors and electrochemical measurements. Most of the study concluded with positive remarks on the well-oriented engineered RGD peptide over their homogenous thin film. The engineered RGD peptide not only influences cell adhesion, spreading and proliferation but also their periodic nano-arrays directly influence electrochemical measurements of the chips. The electrochemical signals found to be enhanced when RGD peptides were used in well-defined two-dimensional nano-arrays. The topographic alteration of three-dimensional structure of engineered RGD peptide was reported to be suitably contacted with the integrin receptors of cellular membrane which results indicated the enhanced cell-electrode adhesion and efficient electron exchange phenomenon. This enhanced electrochemical signal increases the sensitivity of the chip against the target analytes. Therefore, development of engineered cellular recognizable peptides and its 3D topological design for fabrication of cell chip will provide the synergetic effect on bio-affinity, sensitivity and accuracy for the in situ real-time monitoring of analytes.

摘要

具有细胞黏附能力的生物材料被认为是细胞芯片不可或缺的一部分。人们已经开展了大量研究,以寻找一种合适的材料,用于在基底上有效地固定细胞。工程化细胞外基质材料或其成分,如胶原蛋白、聚-L-赖氨酸(PLL)、精氨酸-甘氨酸-天冬氨酸(RGD)肽,已被广泛用于哺乳动物细胞的黏附和增殖,目的是组织再生或基于细胞的传感应用。本综述重点关注短肽即芯片表面RGD肽的二维和三维图案化纳米结构的各种方法,以及它们对细胞行为和电化学测量的影响。大多数研究对取向良好的工程化RGD肽优于其均匀薄膜给出了积极评价。工程化RGD肽不仅影响细胞黏附、铺展和增殖,而且其周期性纳米阵列还直接影响芯片的电化学测量。当RGD肽用于明确的二维纳米阵列时,发现电化学信号增强。据报道,工程化RGD肽三维结构的形貌改变与细胞膜的整合素受体适当接触,结果表明细胞与电极的黏附增强,电子交换现象高效。这种增强的电化学信号提高了芯片对目标分析物的灵敏度。因此,开发工程化细胞可识别肽及其用于制造细胞芯片的3D拓扑设计,将为生物亲和力、灵敏度和准确性提供协同效应,以实现对分析物的原位实时监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe5/6141880/6f4389e59522/40580_2016_77_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验