Liang Xuan, Michael Magdalene, Gomez Guillermo A
Divisions of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia.
Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK.
Bio Protoc. 2016 Dec 20;6(24). doi: 10.21769/BioProtoc.2068.
The cortical actomyosin cytoskeleton is found in all non-muscle cells where a key function is to control mechanical force (Salbreux , 2012). When coupled to E-cadherin cell-cell adhesion, cortical actomyosin generates junctional tension that influences many aspects of tissue function, organization and morphogenesis (Lecuit and Yap, 2015). Uncovering the molecular mechanisms underlying the generation of junctional tension requires tools for measuring it in live cells with a high spatio-temporal resolution. For this, we have set up a technique of laser ablation, in which we use the high power output of a two-photon laser to physically cut the actin cortex at the sites of cell-cell adhesion labeled with E-cadherin-GFP. Tension, thus is visualized as the outwards recoil of the vertices that define a junction after this was ablated/cut. Analysis of recoil versus time allows extracting parameters related to the amount of contractile force that is applied to the junction before ablation (initial recoil) and the ratio between elasticity of the junction and viscosity of the media (cytoplasm) in which the junctional cortex is immersed. Using this approach we have discovered how Src protein-tyrosine kinase (Gomez , 2015); actin-binding proteins such as tropomyosins (Caldwell , 2014) and N-WASP (Wu , 2014); Myosin II (Priya , 2015) and coronin-1B (Michael , 2016) contribute to the molecular apparatus responsible for generating tension at the cell-cell junctions. This protocol describes the experimental procedure for setting up laser ablation experiments and how to optimize ablation and acquisition conditions for optimal measurements of junctional tension. It also provides a full description, step by step, of the post-acquisition analysis required to evaluate changes in contractile force as well as cell elasticity and/or cytoplasm viscosity.
皮质肌动球蛋白细胞骨架存在于所有非肌肉细胞中,其关键功能是控制机械力(Salbreux,2012年)。当与E-钙黏蛋白介导的细胞间黏附相结合时,皮质肌动球蛋白会产生连接张力,影响组织功能、组织和形态发生的许多方面(Lecuit和Yap,2015年)。揭示连接张力产生的分子机制需要具备在活细胞中以高时空分辨率测量它的工具。为此,我们建立了一种激光消融技术,即利用双光子激光的高功率输出在标记有E-钙黏蛋白-GFP的细胞间黏附位点物理切割肌动蛋白皮质。这样,张力就表现为在连接被消融/切割后定义连接的顶点向外的反冲。对反冲与时间的分析可以提取与消融前施加于连接的收缩力大小(初始反冲)以及连接弹性与连接皮质所处介质(细胞质)黏度之间的比率相关的参数。利用这种方法,我们发现了Src蛋白酪氨酸激酶(Gomez,2015年)、肌动蛋白结合蛋白如原肌球蛋白(Caldwell,2014年)和N-WASP(Wu,2014年)、肌球蛋白II(Priya,2015年)和冠蛋白-1B(Michael,2016年)是如何作用于负责在细胞间连接产生张力的分子机制的。本方案描述了设置激光消融实验的实验步骤以及如何优化消融和采集条件以实现对连接张力的最佳测量。它还逐步详细描述了评估收缩力变化以及细胞弹性和/或细胞质黏度所需的采集后分析。