Suppr超能文献

移动内含子塑造其宿主基因的遗传多样性。

Mobile Introns Shape the Genetic Diversity of Their Host Genes.

作者信息

Repar Jelena, Warnecke Tobias

机构信息

Molecular Systems Group, MRC London Institute of Medical Sciences (LMS) W12 0NN, United Kingdom.

Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, W12 0NN, United Kingdom.

出版信息

Genetics. 2017 Apr;205(4):1641-1648. doi: 10.1534/genetics.116.199059. Epub 2017 Feb 13.

Abstract

Self-splicing introns populate several highly conserved protein-coding genes in fungal and plant mitochondria. In fungi, many of these introns have retained their ability to spread to intron-free target sites, often assisted by intron-encoded endonucleases that initiate the homing process. Here, leveraging population genomic data from , , and , we expose nonrandom patterns of genetic diversity in exons that border self-splicing introns. In particular, we show that, in all three species, the density of single nucleotide polymorphisms increases as one approaches a mobile intron. Through multiple lines of evidence, we rule out relaxed purifying selection as the cause of uneven nucleotide diversity. Instead, our findings implicate intron mobility as a direct driver of host gene diversity. We discuss two mechanistic scenarios that are consistent with the data: either endonuclease activity and subsequent error-prone repair have left a mutational footprint on the insertion environment of mobile introns or nonrandom patterns of genetic diversity are caused by exonic coconversion, which occurs when introns spread to empty target sites via homologous recombination. Importantly, however, we show that exonic coconversion can only explain diversity gradients near intron-exon boundaries if the conversion template comes from outside the population. In other words, there must be pervasive and ongoing horizontal gene transfer of self-splicing introns into extant fungal populations.

摘要

自我剪接内含子存在于真菌和植物线粒体中的几个高度保守的蛋白质编码基因中。在真菌中,许多这类内含子保留了扩散到无内含子靶位点的能力,通常由启动归巢过程的内含子编码内切核酸酶协助。在这里,利用来自[具体物种1]、[具体物种2]和[具体物种3]的群体基因组数据,我们揭示了与自我剪接内含子相邻的外显子中遗传多样性的非随机模式。特别是,我们表明,在所有这三个物种中,单核苷酸多态性的密度随着接近可移动内含子而增加。通过多条证据,我们排除了宽松的纯化选择作为核苷酸多样性不均一的原因。相反,我们的发现表明内含子移动性是宿主基因多样性的直接驱动因素。我们讨论了两种与数据一致的机制情景:要么内切核酸酶活性和随后的易错修复在可移动内含子的插入环境上留下了突变印记,要么遗传多样性的非随机模式是由外显子共转换引起的,当内含子通过同源重组扩散到空的靶位点时就会发生这种情况。然而,重要的是,我们表明,如果转换模板来自群体外部,外显子共转换只能解释内含子 - 外显子边界附近的多样性梯度。换句话说,自我剪接内含子必须持续广泛地水平基因转移到现存的真菌群体中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/affc/5378118/c739083957e9/1641fig1.jpg

相似文献

1
Mobile Introns Shape the Genetic Diversity of Their Host Genes.
Genetics. 2017 Apr;205(4):1641-1648. doi: 10.1534/genetics.116.199059. Epub 2017 Feb 13.
2
Multiple homing pathways used by yeast mitochondrial group II introns.
Mol Cell Biol. 2000 Nov;20(22):8432-46. doi: 10.1128/MCB.20.22.8432-8446.2000.
3
Mutational Effects of Mobile Introns on the Mitochondrial Genomes of Yeasts.
Front Genet. 2021 Nov 4;12:785218. doi: 10.3389/fgene.2021.785218. eCollection 2021.
4
Mitochondrial-encoded endonucleases drive recombination of protein-coding genes in yeast.
Environ Microbiol. 2019 Nov;21(11):4233-4240. doi: 10.1111/1462-2920.14783. Epub 2019 Sep 1.
7
A likely pathway for formation of mobile group I introns.
Curr Biol. 2009 Feb 10;19(3):223-8. doi: 10.1016/j.cub.2009.01.033.

引用本文的文献

1
Frequent genetic exchanges revealed by a pan-mitogenome graph of a fungal plant pathogen.
mBio. 2024 Dec 11;15(12):e0275824. doi: 10.1128/mbio.02758-24. Epub 2024 Nov 13.
3
Exploring Mitochondrial Heterogeneity and Evolutionary Dynamics in through Population Genomics.
Int J Mol Sci. 2024 Aug 19;25(16):9013. doi: 10.3390/ijms25169013.
4
Group I introns: Structure, splicing and their applications in medical mycology.
Genet Mol Biol. 2024 Mar 25;47Suppl 1(Suppl 1):e20230228. doi: 10.1590/1678-4685-GMB-2023-0228. eCollection 2024.
5
Editorial: The significance of mitogenomics in mycology, volume II.
Front Microbiol. 2023 Dec 14;14:1344877. doi: 10.3389/fmicb.2023.1344877. eCollection 2023.
6
Mitochondrial genome diversity across the subphylum Saccharomycotina.
Front Microbiol. 2023 Nov 23;14:1268944. doi: 10.3389/fmicb.2023.1268944. eCollection 2023.
7
Systematic dissection of genomic features determining the vast diversity of conotoxins.
BMC Genomics. 2023 Oct 9;24(1):598. doi: 10.1186/s12864-023-09689-4.
8
The mitogenomes of , sp., and : expansion by introns.
Front Microbiol. 2023 Aug 10;14:1240407. doi: 10.3389/fmicb.2023.1240407. eCollection 2023.
9
Mitochondrial Genome Diversity across the Subphylum Saccharomycotina.
bioRxiv. 2023 Jul 31:2023.07.28.551029. doi: 10.1101/2023.07.28.551029.
10
Functional annotation and comparative analysis of four mitogenomes reported from Punjab, Pakistan.
Saudi J Biol Sci. 2023 Apr;30(4):103605. doi: 10.1016/j.sjbs.2023.103605. Epub 2023 Feb 23.

本文引用的文献

1
DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks.
Mol Cell. 2016 Aug 18;63(4):633-646. doi: 10.1016/j.molcel.2016.06.037. Epub 2016 Aug 4.
2
Mutational Biases Drive Elevated Rates of Substitution at Regulatory Sites across Cancer Types.
PLoS Genet. 2016 Aug 4;12(8):e1006207. doi: 10.1371/journal.pgen.1006207. eCollection 2016 Aug.
3
Nucleotide excision repair is impaired by binding of transcription factors to DNA.
Nature. 2016 Apr 14;532(7598):264-7. doi: 10.1038/nature17661.
4
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.
Nature. 2016 Jan 28;529(7587):490-5. doi: 10.1038/nature16526. Epub 2016 Jan 6.
5
Population structure of mitochondrial genomes in Saccharomyces cerevisiae.
BMC Genomics. 2015 Jun 11;16(1):451. doi: 10.1186/s12864-015-1664-4.
6
Error-Prone Repair of DNA Double-Strand Breaks.
J Cell Physiol. 2016 Jan;231(1):15-24. doi: 10.1002/jcp.25053.
8
The genomic and phenotypic diversity of Schizosaccharomyces pombe.
Nat Genet. 2015 Mar;47(3):235-41. doi: 10.1038/ng.3215. Epub 2015 Feb 9.
9
Lagging-strand replication shapes the mutational landscape of the genome.
Nature. 2015 Feb 26;518(7540):502-506. doi: 10.1038/nature14183. Epub 2015 Jan 26.
10
mtDNA Variation and Analysis Using Mitomap and Mitomaster.
Curr Protoc Bioinformatics. 2013 Dec;44(123):1.23.1-26. doi: 10.1002/0471250953.bi0123s44.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验