Baumann Claudia, Wang Xiaotian, Yang Luhan, Viveiros Maria M
Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
J Cell Sci. 2017 Apr 1;130(7):1251-1262. doi: 10.1242/jcs.196188. Epub 2017 Feb 13.
Mouse oocytes lack canonical centrosomes and instead contain unique acentriolar microtubule-organizing centers (aMTOCs). To test the function of these distinct aMTOCs in meiotic spindle formation, pericentrin (Pcnt), an essential centrosome/MTOC protein, was knocked down exclusively in oocytes by using a transgenic RNAi approach. Here, we provide evidence that disruption of aMTOC function in oocytes promotes spindle instability and severe meiotic errors that lead to pronounced female subfertility. Pcnt-depleted oocytes from transgenic (Tg) mice were ovulated at the metaphase-II stage, but show significant chromosome misalignment, aneuploidy and premature sister chromatid separation. These defects were associated with loss of key Pcnt-interacting proteins (γ-tubulin, Nedd1 and Cep215) from meiotic spindle poles, altered spindle structure and chromosome-microtubule attachment errors. Live-cell imaging revealed disruptions in the dynamics of spindle assembly and organization, together with chromosome attachment and congression defects. Notably, spindle formation was dependent on Ran GTPase activity in Pcnt-deficient oocytes. Our findings establish that meiotic division is highly error-prone in the absence of Pcnt and disrupted aMTOCs, similar to what reportedly occurs in human oocytes. Moreover, these data underscore crucial differences between MTOC-dependent and -independent meiotic spindle assembly.
小鼠卵母细胞缺乏典型的中心体,而是含有独特的无中心粒微管组织中心(aMTOCs)。为了测试这些独特的aMTOCs在减数分裂纺锤体形成中的功能,通过转基因RNA干扰方法,仅在卵母细胞中敲低了中心体/微管组织中心的一种重要蛋白——中心粒外周蛋白(Pcnt)。在此,我们提供证据表明,卵母细胞中aMTOCs功能的破坏会促进纺锤体不稳定和严重的减数分裂错误,从而导致明显的雌性生育力下降。来自转基因(Tg)小鼠的Pcnt缺失的卵母细胞在减数分裂中期II阶段排卵,但显示出明显的染色体排列错误、非整倍体和姐妹染色单体过早分离。这些缺陷与减数分裂纺锤体极上关键的Pcnt相互作用蛋白(γ-微管蛋白、Nedd1和Cep215)的缺失、纺锤体结构改变以及染色体-微管附着错误有关。活细胞成像揭示了纺锤体组装和组织动力学的破坏,以及染色体附着和向赤道板汇聚的缺陷。值得注意的是,在Pcnt缺陷的卵母细胞中,纺锤体形成依赖于Ran GTP酶活性。我们的研究结果表明,在缺乏Pcnt和aMTOCs功能破坏的情况下,减数分裂极易出错,这与据报道在人类卵母细胞中发生的情况类似。此外,这些数据强调了依赖中心体的和不依赖中心体的减数分裂纺锤体组装之间的关键差异。