Suppr超能文献

昆虫光感受器对夜视的适应性。

Insect photoreceptor adaptations to night vision.

作者信息

Honkanen Anna, Immonen Esa-Ville, Salmela Iikka, Heimonen Kyösti, Weckström Matti

机构信息

Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland.

Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, Oulu, Finland

出版信息

Philos Trans R Soc Lond B Biol Sci. 2017 Apr 5;372(1717). doi: 10.1098/rstb.2016.0077.

Abstract

Night vision is ultimately about extracting information from a noisy visual input. Several species of nocturnal insects exhibit complex visually guided behaviour in conditions where most animals are practically blind. The compound eyes of nocturnal insects produce strong responses to single photons and process them into meaningful neural signals, which are amplified by specialized neuroanatomical structures. While a lot is known about the light responses and the anatomical structures that promote pooling of responses to increase sensitivity, there is still a dearth of knowledge on the physiology of night vision. Retinal photoreceptors form the first bottleneck for the transfer of visual information. In this review, we cover the basics of what is known about physiological adaptations of insect photoreceptors for low-light vision. We will also discuss major enigmas of some of the functional properties of nocturnal photoreceptors, and describe recent advances in methodologies that may help to solve them and broaden the field of insect vision research to new model animals.This article is part of the themed issue 'Vision in dim light'.

摘要

夜视归根结底是关于从嘈杂的视觉输入中提取信息。几种夜行性昆虫在大多数动物几乎失明的条件下表现出复杂的视觉引导行为。夜行性昆虫的复眼对单个光子产生强烈反应,并将其处理成有意义的神经信号,这些信号由专门的神经解剖结构放大。虽然我们对光反应以及促进反应汇聚以提高灵敏度的解剖结构了解很多,但在夜视生理学方面仍然缺乏知识。视网膜光感受器构成了视觉信息传递的第一个瓶颈。在这篇综述中,我们涵盖了已知的昆虫光感受器对弱光视觉的生理适应的基础知识。我们还将讨论夜行性光感受器一些功能特性的主要谜团,并描述可能有助于解决这些谜团并将昆虫视觉研究领域扩展到新模型动物的方法学的最新进展。本文是主题为“弱光下的视觉”的特刊的一部分。

相似文献

1
Insect photoreceptor adaptations to night vision.
Philos Trans R Soc Lond B Biol Sci. 2017 Apr 5;372(1717). doi: 10.1098/rstb.2016.0077.
2
The remarkable visual capacities of nocturnal insects: vision at the limits with small eyes and tiny brains.
Philos Trans R Soc Lond B Biol Sci. 2017 Apr 5;372(1717). doi: 10.1098/rstb.2016.0063.
3
Adaptations for nocturnal vision in insect apposition eyes.
Int Rev Cytol. 2006;250:1-46. doi: 10.1016/S0074-7696(06)50001-4.
4
Electrophysiological adaptations of insect photoreceptors and their elementary responses to diurnal and nocturnal lifestyles.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2020 Jan;206(1):55-69. doi: 10.1007/s00359-019-01392-8. Epub 2019 Dec 19.
5
Seeing in the dark: vision and visual behaviour in nocturnal bees and wasps.
J Exp Biol. 2008 Jun;211(Pt 11):1737-46. doi: 10.1242/jeb.015396.
6
Nocturnal vision and landmark orientation in a tropical halictid bee.
Curr Biol. 2004 Aug 10;14(15):1309-18. doi: 10.1016/j.cub.2004.07.057.
7
Visual reliability and information rate in the retina of a nocturnal bee.
Curr Biol. 2008 Mar 11;18(5):349-53. doi: 10.1016/j.cub.2008.01.057.
8
Thresholds and noise limitations of colour vision in dim light.
Philos Trans R Soc Lond B Biol Sci. 2017 Apr 5;372(1717). doi: 10.1098/rstb.2016.0065.
9
Ocellar adaptations for dim light vision in a nocturnal bee.
J Exp Biol. 2011 Apr 15;214(Pt 8):1283-93. doi: 10.1242/jeb.050427.
10
Vision and visual navigation in nocturnal insects.
Annu Rev Entomol. 2011;56:239-54. doi: 10.1146/annurev-ento-120709-144852.

引用本文的文献

1
Molecular basis of circadian rhythm divergence between diurnal and nocturnal lepidoperans.
iScience. 2025 Mar 12;28(4):112206. doi: 10.1016/j.isci.2025.112206. eCollection 2025 Apr 18.
5
Mechanisms of spectral orientation in a diurnal dung beetle.
Philos Trans R Soc Lond B Biol Sci. 2022 Oct 24;377(1862):20210287. doi: 10.1098/rstb.2021.0287. Epub 2022 Sep 5.
9
Transduction and Adaptation Mechanisms in the Cilium or Microvilli of Photoreceptors and Olfactory Receptors From Insects to Humans.
Front Cell Neurosci. 2021 Apr 1;15:662453. doi: 10.3389/fncel.2021.662453. eCollection 2021.
10
Impact of artificial light intensity on nocturnal insect diversity in urban and rural areas of the Asir province, Saudi Arabia.
PLoS One. 2020 Dec 1;15(12):e0242315. doi: 10.1371/journal.pone.0242315. eCollection 2020.

本文引用的文献

1
Current advances in invertebrate vision: insights from patch-clamp studies of photoreceptors in apposition eyes.
J Neurophysiol. 2016 Aug 1;116(2):709-23. doi: 10.1152/jn.00288.2016. Epub 2016 Jun 1.
2
Neural Summation in the Hawkmoth Visual System Extends the Limits of Vision in Dim Light.
Curr Biol. 2016 Mar 21;26(6):821-6. doi: 10.1016/j.cub.2016.01.030. Epub 2016 Mar 3.
3
Visual ecology and potassium conductances of insect photoreceptors.
J Neurophysiol. 2016 Apr;115(4):2147-57. doi: 10.1152/jn.00795.2015. Epub 2016 Feb 10.
5
Adaptations for nocturnal and diurnal vision in the hawkmoth lamina.
J Comp Neurol. 2016 Jan 1;524(1):160-75. doi: 10.1002/cne.23832. Epub 2015 Jul 16.
6
Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees.
J Exp Biol. 2015 May;218(Pt 9):1339-46. doi: 10.1242/jeb.113886. Epub 2015 Mar 6.
8
Cockroach optomotor responses below single photon level.
J Exp Biol. 2014 Dec 1;217(Pt 23):4262-8. doi: 10.1242/jeb.112425.
9
Rhodopsin management during the light-dark cycle of Anopheles gambiae mosquitoes.
J Insect Physiol. 2014 Nov;70:88-93. doi: 10.1016/j.jinsphys.2014.09.006. Epub 2014 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验