Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, OR, 97403-1253, USA.
Materials Science Institute, University of Oregon, 1252 University of Oregon, Eugene, OR, 97403-1252, USA.
J Am Soc Mass Spectrom. 2017 Apr;28(4):587-596. doi: 10.1007/s13361-017-1594-2. Epub 2017 Feb 13.
Ion mobility-mass spectrometry (IM-MS) can be a powerful tool for determining structural information about ions in the gas phase, from small covalent analytes to large, native-like or denatured proteins and complexes. For large biomolecular ions, which may have a wide variety of possible gas-phase conformations and multiple charge sites, quantitative, physically explicit modeling of collisional cross sections (CCSs) for comparison to IMS data can be challenging and time-consuming. We present a "trajectory method" (TM) based CCS calculator, named "Collidoscope," which utilizes parallel processing and optimized trajectory sampling, and implements both He and N as collision gas options. Also included is a charge-placement algorithm for determining probable charge site configurations for protonated protein ions given an input geometry in pdb file format. Results from Collidoscope are compared with those from the current state-of-the-art CCS simulation suite, IMoS. Collidoscope CCSs are within 4% of IMoS values for ions with masses from ~18 Da to ~800 kDa. Collidoscope CCSs using X-ray crystal geometries are typically within a few percent of IM-MS experimental values for ions with mass up to ~3.5 kDa (melittin), and discrepancies for larger ions up to ~800 kDa (GroEL) are attributed in large part to changes in ion structure during and after the electrospray process. Due to its physically explicit modeling of scattering, computational efficiency, and accuracy, Collidoscope can be a valuable tool for IM-MS research, especially for large biomolecular ions. Graphical Abstract ᅟ.
离子淌度-质谱(IM-MS)可以成为一种强大的工具,用于确定气相中离子的结构信息,从小的共价分析物到大的、天然或变性的蛋白质和复合物。对于大的生物分子离子,其可能具有广泛的气相构象和多个电荷位点,因此,对碰撞截面(CCS)进行定量、物理明确的建模以与 IMS 数据进行比较可能具有挑战性和耗时。我们提出了一种基于“轨迹方法”(TM)的 CCS 计算器,名为“Collidoscope”,它利用并行处理和优化的轨迹采样,并实现了 He 和 N 作为碰撞气体选项。此外,它还包含一个用于确定质子化蛋白质离子可能的电荷位点配置的电荷放置算法,给定pdb 文件格式的输入几何形状。Collidoscope 的结果与当前最先进的 CCS 模拟套件 IMoS 的结果进行了比较。对于质量在 18 Da 到 800 kDa 之间的离子,Collidoscope 的 CCS 与 IMoS 值相差在 4%以内。对于质量高达 3.5 kDa(蜂毒肽)的离子,使用 X 射线晶体几何形状的 Collidoscope CCS 通常与 IM-MS 实验值相差几个百分点,而对于质量高达 800 kDa(GroEL)的较大离子的差异在很大程度上归因于在电喷雾过程中和之后离子结构的变化。由于其对散射的物理明确建模、计算效率和准确性,Collidoscope 可以成为 IM-MS 研究的有价值的工具,特别是对于大的生物分子离子。图摘要。