Suppr超能文献

Collidoscope:一种用于通过轨迹方法计算碰撞截面的改进工具。

Collidoscope: An Improved Tool for Computing Collisional Cross-Sections with the Trajectory Method.

机构信息

Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, OR, 97403-1253, USA.

Materials Science Institute, University of Oregon, 1252 University of Oregon, Eugene, OR, 97403-1252, USA.

出版信息

J Am Soc Mass Spectrom. 2017 Apr;28(4):587-596. doi: 10.1007/s13361-017-1594-2. Epub 2017 Feb 13.

Abstract

Ion mobility-mass spectrometry (IM-MS) can be a powerful tool for determining structural information about ions in the gas phase, from small covalent analytes to large, native-like or denatured proteins and complexes. For large biomolecular ions, which may have a wide variety of possible gas-phase conformations and multiple charge sites, quantitative, physically explicit modeling of collisional cross sections (CCSs) for comparison to IMS data can be challenging and time-consuming. We present a "trajectory method" (TM) based CCS calculator, named "Collidoscope," which utilizes parallel processing and optimized trajectory sampling, and implements both He and N as collision gas options. Also included is a charge-placement algorithm for determining probable charge site configurations for protonated protein ions given an input geometry in pdb file format. Results from Collidoscope are compared with those from the current state-of-the-art CCS simulation suite, IMoS. Collidoscope CCSs are within 4% of IMoS values for ions with masses from ~18 Da to ~800 kDa. Collidoscope CCSs using X-ray crystal geometries are typically within a few percent of IM-MS experimental values for ions with mass up to ~3.5 kDa (melittin), and discrepancies for larger ions up to ~800 kDa (GroEL) are attributed in large part to changes in ion structure during and after the electrospray process. Due to its physically explicit modeling of scattering, computational efficiency, and accuracy, Collidoscope can be a valuable tool for IM-MS research, especially for large biomolecular ions. Graphical Abstract ᅟ.

摘要

离子淌度-质谱(IM-MS)可以成为一种强大的工具,用于确定气相中离子的结构信息,从小的共价分析物到大的、天然或变性的蛋白质和复合物。对于大的生物分子离子,其可能具有广泛的气相构象和多个电荷位点,因此,对碰撞截面(CCS)进行定量、物理明确的建模以与 IMS 数据进行比较可能具有挑战性和耗时。我们提出了一种基于“轨迹方法”(TM)的 CCS 计算器,名为“Collidoscope”,它利用并行处理和优化的轨迹采样,并实现了 He 和 N 作为碰撞气体选项。此外,它还包含一个用于确定质子化蛋白质离子可能的电荷位点配置的电荷放置算法,给定pdb 文件格式的输入几何形状。Collidoscope 的结果与当前最先进的 CCS 模拟套件 IMoS 的结果进行了比较。对于质量在 18 Da 到 800 kDa 之间的离子,Collidoscope 的 CCS 与 IMoS 值相差在 4%以内。对于质量高达 3.5 kDa(蜂毒肽)的离子,使用 X 射线晶体几何形状的 Collidoscope CCS 通常与 IM-MS 实验值相差几个百分点,而对于质量高达 800 kDa(GroEL)的较大离子的差异在很大程度上归因于在电喷雾过程中和之后离子结构的变化。由于其对散射的物理明确建模、计算效率和准确性,Collidoscope 可以成为 IM-MS 研究的有价值的工具,特别是对于大的生物分子离子。图摘要。

相似文献

1
Collidoscope: An Improved Tool for Computing Collisional Cross-Sections with the Trajectory Method.
J Am Soc Mass Spectrom. 2017 Apr;28(4):587-596. doi: 10.1007/s13361-017-1594-2. Epub 2017 Feb 13.
2
Gas molecule scattering & ion mobility measurements for organic macro-ions in He versus N2 environments.
Phys Chem Chem Phys. 2015 Jun 14;17(22):15019-29. doi: 10.1039/c5cp01017a.
3
Surface induced dissociation: dissecting noncovalent protein complexes in the gas phase.
Acc Chem Res. 2014 Apr 15;47(4):1010-8. doi: 10.1021/ar400223t. Epub 2014 Feb 13.
6
First-Principles Collision Cross Section Measurements of Large Proteins and Protein Complexes.
Anal Chem. 2020 Aug 18;92(16):11155-11163. doi: 10.1021/acs.analchem.0c01285. Epub 2020 Jul 28.
7
Determining Collisional Cross Sections from Ion Decay with Individual Ion Mass Spectrometry.
J Am Soc Mass Spectrom. 2023 Dec 6;34(12):2625-2629. doi: 10.1021/jasms.3c00340. Epub 2023 Nov 27.
8
Extended Protein Ions Are Formed by the Chain Ejection Model in Chemical Supercharging Electrospray Ionization.
Anal Chem. 2017 May 2;89(9):5107-5114. doi: 10.1021/acs.analchem.7b00673. Epub 2017 Apr 12.
9
Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans.
J Am Soc Mass Spectrom. 2018 Jun;29(6):1250-1261. doi: 10.1007/s13361-018-1930-1. Epub 2018 Apr 19.
10
CIUSuite 3: Next-Generation CCS Calibration and Automated Data Analysis Tools for Gas-Phase Protein Unfolding Data.
J Am Soc Mass Spectrom. 2024 Aug 7;35(8):1865-1874. doi: 10.1021/jasms.4c00176. Epub 2024 Jul 5.

引用本文的文献

3
Computational tools and algorithms for ion mobility spectrometry-mass spectrometry.
Proteomics. 2024 Jun;24(12-13):e2200436. doi: 10.1002/pmic.202200436. Epub 2024 Mar 4.
4
Guest Encapsulation Alters the Thermodynamic Landscape of a Coordination Host.
J Am Chem Soc. 2023 Nov 2;145(45):24755-64. doi: 10.1021/jacs.3c08666.
5
Collision cross section measurement and prediction methods in omics.
J Mass Spectrom. 2023 Sep;58(9):e4973. doi: 10.1002/jms.4973. Epub 2023 Aug 24.
7
Gas-phase stability and thermodynamics of ligand-bound, binary complexes of chloramphenicol acetyltransferase reveal negative cooperativity.
Anal Bioanal Chem. 2023 Oct;415(25):6201-6212. doi: 10.1007/s00216-023-04891-5. Epub 2023 Aug 5.
9
Collision Cross Section Prediction Based on Machine Learning.
Molecules. 2023 May 12;28(10):4050. doi: 10.3390/molecules28104050.

本文引用的文献

1
Radio-Frequency (rf) Confinement in Ion Mobility Spectrometry: Apparent Mobilities and Effective Temperatures.
J Am Soc Mass Spectrom. 2016 Dec;27(12):2054-2063. doi: 10.1007/s13361-016-1479-9. Epub 2016 Aug 31.
2
Collision-Induced Dissociation of Electrosprayed Protein Complexes: An All-Atom Molecular Dynamics Model with Mobile Protons.
J Phys Chem B. 2016 Jun 16;120(23):5114-24. doi: 10.1021/acs.jpcb.6b03035. Epub 2016 Jun 3.
4
Sizing and Discovery of Nanosized Polyoxometalate Clusters by Mass Spectrometry.
J Am Chem Soc. 2016 Mar 23;138(11):3824-30. doi: 10.1021/jacs.6b00070. Epub 2016 Mar 14.
5
Hybrid ion mobility and mass spectrometry as a separation tool.
J Chromatogr A. 2016 Mar 25;1439:3-25. doi: 10.1016/j.chroma.2015.10.080. Epub 2015 Nov 10.
6
A local collision probability approximation for predicting momentum transfer cross sections.
Analyst. 2015 Oct 21;140(20):6804-13. doi: 10.1039/c5an00712g.
7
Gas molecule scattering & ion mobility measurements for organic macro-ions in He versus N2 environments.
Phys Chem Chem Phys. 2015 Jun 14;17(22):15019-29. doi: 10.1039/c5cp01017a.
9
Collision cross sections for structural proteomics.
Structure. 2015 Apr 7;23(4):791-9. doi: 10.1016/j.str.2015.02.010. Epub 2015 Mar 19.
10
Polymer topology revealed by ion mobility coupled with mass spectrometry.
Anal Chem. 2014 Oct 7;86(19):9693-700. doi: 10.1021/ac502246g. Epub 2014 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验