Danne Linna, Aktas Meriyem, Unger Andreas, Linke Wolfgang A, Erdmann Ralf, Narberhaus Franz
Microbial Biology, Faculty of Biology, Ruhr University Bochum, Bochum, Germany.
Department of Cardiovascular Physiology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany.
mBio. 2017 Feb 14;8(1):e02082-16. doi: 10.1128/mBio.02082-16.
Membrane deformation by proteins is a universal phenomenon that has been studied extensively in eukaryotes but much less in prokaryotes. In this study, we discovered a membrane-deforming activity of the phospholipid -methyltransferase PmtA from the plant-pathogenic bacterium PmtA catalyzes the successive three-step -methylation of phosphatidylethanolamine to phosphatidylcholine. Here, we defined the lipid and protein requirements for the membrane-remodeling activity of PmtA by a combination of transmission electron microscopy and liposome interaction studies. Dependent on the lipid composition, PmtA changes the shape of spherical liposomes either into filaments or small vesicles. Upon overproduction of PmtA in , vesicle-like structures occur in the cytoplasm, dependent on the presence of the anionic lipid cardiolipin. The N-terminal lipid-binding α-helix (αA) is involved in membrane deformation by PmtA. Two functionally distinct and spatially separated regions in αA can be distinguished. Anionic interactions by positively charged amino acids on one face of the helix are responsible for membrane recruitment of the enzyme. The opposite hydrophobic face of the helix is required for membrane remodeling, presumably by shallow insertion into the lipid bilayer. The ability to alter the morphology of biological membranes is known for a small number of some bacterial proteins. Our study adds the phospholipid -methyltransferase PmtA as a new member to the category of bacterial membrane-remodeling proteins. A combination of and methods reveals the molecular requirements for membrane deformation at the protein and phospholipid level. The dual functionality of PmtA suggests a contribution of membrane biosynthesis enzymes to the complex morphology of bacterial membranes.
蛋白质引起的膜变形是一种普遍现象,在真核生物中已得到广泛研究,但在原核生物中的研究要少得多。在本研究中,我们发现了植物病原菌中的磷脂甲基转移酶PmtA具有膜变形活性。PmtA催化磷脂酰乙醇胺连续三步甲基化生成磷脂酰胆碱。在这里,我们通过透射电子显微镜和脂质体相互作用研究相结合的方法,确定了PmtA膜重塑活性所需的脂质和蛋白质条件。根据脂质组成,PmtA可将球形脂质体的形状改变为丝状或小泡状。在细胞中过量表达PmtA时,细胞质中会出现囊泡状结构,这取决于阴离子脂质心磷脂的存在。N端脂质结合α螺旋(αA)参与PmtA引起的膜变形。αA中可区分出两个功能不同且空间分离的区域。螺旋一侧带正电荷的氨基酸通过阴离子相互作用负责该酶在膜上的募集。螺旋相对的疏水侧是膜重塑所必需的,可能是通过浅插入脂质双层来实现。少数细菌蛋白具有改变生物膜形态的能力。我们的研究将磷脂甲基转移酶PmtA作为细菌膜重塑蛋白类别中的一个新成员。两种方法相结合揭示了蛋白质和磷脂水平上膜变形的分子条件。PmtA的双重功能表明膜生物合成酶对细菌膜复杂形态的形成有贡献。