Bedhomme S, Perez Pantoja D, Bravo I G
Centre d'Ecologie Fonctionnelle et Evolutive, UMR CNRS 5175, 34293, Montpellier, France.
Laboratory MIVEGEC, UMR CNRS 5290, IRD 224, UM, Centre National de la Recherche Scientifique, 911 avenue Agropolis, BP64501, 34394, Montpellier Cedex 05, France.
Mol Ecol. 2017 Apr;26(7):1832-1847. doi: 10.1111/mec.14056. Epub 2017 Mar 13.
Plasmids are nucleic acid molecules that can drive their own replication in a living cell. They can be transmitted horizontally and can thrive in the host cell to high-copy numbers. Plasmid replication and gene expression consume cellular resources and cells carrying plasmids incur fitness costs. But many plasmids carry genes that can be beneficial under certain conditions, allowing the cell to endure in the presence of antibiotics, toxins, competitors or parasites. Horizontal transfer of plasmid-encoded genes can thus instantaneously confer differential adaptation to local or transient selection conditions. This conflict between cellular fitness and plasmid spread sets the scene for multilevel selection processes. We have engineered a system to study the short-term evolutionary impact of different synonymous versions of a plasmid-encoded antibiotic resistance gene. Applying experimental evolution under different selection conditions and deep sequencing allowed us to show rapid local adaptation to the presence of antibiotic and to the specific version of the resistance gene transferred. We describe the presence of clonal interference at two different levels: at the within-cell level, because a single cell can carry several plasmids, and at the between-cell level, because a bacterial population may contain several clones carrying different plasmids and displaying different fitness in the presence/absence of antibiotic. Understanding the within-cell and between-cell dynamics of plasmids after horizontal gene transfer is essential to unravel the dense network of mobile elements underlying the worldwide threat to public health of antibiotic resistance.
质粒是能够在活细胞中驱动自身复制的核酸分子。它们可以水平转移,并能在宿主细胞中以高拷贝数大量增殖。质粒复制和基因表达会消耗细胞资源,携带质粒的细胞会付出适应性代价。但是许多质粒携带的基因在某些条件下可能是有益的,能使细胞在抗生素、毒素、竞争者或寄生虫存在的情况下存活下来。因此,质粒编码基因的水平转移能够使细胞迅速适应局部或短暂的选择条件。细胞适应性与质粒传播之间的这种冲突为多层次选择过程创造了条件。我们设计了一个系统,来研究质粒编码的抗生素抗性基因不同同义版本的短期进化影响。在不同选择条件下进行实验进化并结合深度测序,使我们能够证明细胞能迅速适应抗生素的存在以及所转移抗性基因的特定版本。我们描述了克隆干扰在两个不同层面的存在:在细胞内层面,因为单个细胞可以携带多个质粒;在细胞间层面,因为细菌群体可能包含几个携带不同质粒且在有无抗生素情况下表现出不同适应性的克隆。了解水平基因转移后质粒在细胞内和细胞间的动态变化,对于揭示构成全球抗生素耐药性对公共卫生威胁基础的密集移动元件网络至关重要。