Suppr超能文献

极端嗜热微生物的生理、代谢及生物技术特性

Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms.

作者信息

Counts James A, Zeldes Benjamin M, Lee Laura L, Straub Christopher T, Adams Michael W W, Kelly Robert M

机构信息

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.

Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.

出版信息

Wiley Interdiscip Rev Syst Biol Med. 2017 May;9(3). doi: 10.1002/wsbm.1377. Epub 2017 Feb 16.

Abstract

The current upper thermal limit for life as we know it is approximately 120°C. Microorganisms that grow optimally at temperatures of 75°C and above are usually referred to as 'extreme thermophiles' and include both bacteria and archaea. For over a century, there has been great scientific curiosity in the basic tenets that support life in thermal biotopes on earth and potentially on other solar bodies. Extreme thermophiles can be aerobes, anaerobes, autotrophs, heterotrophs, or chemolithotrophs, and are found in diverse environments including shallow marine fissures, deep sea hydrothermal vents, terrestrial hot springs-basically, anywhere there is hot water. Initial efforts to study extreme thermophiles faced challenges with their isolation from difficult to access locales, problems with their cultivation in laboratories, and lack of molecular tools. Fortunately, because of their relatively small genomes, many extreme thermophiles were among the first organisms to be sequenced, thereby opening up the application of systems biology-based methods to probe their unique physiological, metabolic and biotechnological features. The bacterial genera Caldicellulosiruptor, Thermotoga and Thermus, and the archaea belonging to the orders Thermococcales and Sulfolobales, are among the most studied extreme thermophiles to date. The recent emergence of genetic tools for many of these organisms provides the opportunity to move beyond basic discovery and manipulation to biotechnologically relevant applications of metabolic engineering. WIREs Syst Biol Med 2017, 9:e1377. doi: 10.1002/wsbm.1377 For further resources related to this article, please visit the WIREs website.

摘要

就我们所知,目前生命的最高热限约为120°C。在75°C及以上温度下生长最佳的微生物通常被称为“极端嗜热菌”,包括细菌和古菌。一个多世纪以来,对于支持地球上热生物群落乃至其他天体上生命存在的基本原理,科学界一直怀有浓厚的兴趣。极端嗜热菌可以是需氧菌、厌氧菌、自养菌、异养菌或化能无机营养菌,存在于各种环境中,包括浅海裂缝、深海热液喷口、陆地温泉——基本上,任何有热水的地方。最初研究极端嗜热菌时,在从难以到达的地方分离它们、在实验室培养它们以及缺乏分子工具等方面都面临挑战。幸运的是,由于它们的基因组相对较小,许多极端嗜热菌是最早被测序的生物之一,从而开启了基于系统生物学方法的应用,以探究它们独特的生理、代谢和生物技术特性。嗜热栖热袍菌属、嗜热栖热菌属和栖热放线菌属细菌,以及属于热球菌目和硫化叶菌目的古菌,是迄今为止研究最多的极端嗜热菌。最近,许多这类生物的遗传工具的出现,为从基础发现和操作转向代谢工程的生物技术相关应用提供了机会。WIREs系统生物学与医学2017年,9:e1377。doi:10.1002/wsbm.1377 有关本文的更多资源,请访问WIREs网站。

相似文献

1
Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms.
Wiley Interdiscip Rev Syst Biol Med. 2017 May;9(3). doi: 10.1002/wsbm.1377. Epub 2017 Feb 16.
2
Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals.
Front Microbiol. 2015 Nov 5;6:1209. doi: 10.3389/fmicb.2015.01209. eCollection 2015.
3
Extremely thermophilic energy metabolisms: biotechnological prospects.
Curr Opin Biotechnol. 2017 Jun;45:104-112. doi: 10.1016/j.copbio.2017.02.016. Epub 2017 Mar 16.
4
Greigite nanocrystals produced by hyperthermophilic archaea of Thermococcales order.
PLoS One. 2018 Aug 2;13(8):e0201549. doi: 10.1371/journal.pone.0201549. eCollection 2018.
5
The biology of thermoacidophilic archaea from the order Sulfolobales.
FEMS Microbiol Rev. 2021 Aug 17;45(4). doi: 10.1093/femsre/fuaa063.
6
Cultivated anaerobic acidophilic/acidotolerant thermophiles from terrestrial and deep-sea hydrothermal habitats.
Extremophiles. 2005 Dec;9(6):437-48. doi: 10.1007/s00792-005-0461-4. Epub 2005 Jun 22.
7
Anaerobic thermophiles.
Life (Basel). 2014 Feb 26;4(1):77-104. doi: 10.3390/life4010077.
8
Diversity of thermophilic anaerobes.
Ann N Y Acad Sci. 2008 Mar;1125:1-43. doi: 10.1196/annals.1419.029.
9
Biotechnology of extremely thermophilic archaea.
FEMS Microbiol Rev. 2018 Sep 1;42(5):543-578. doi: 10.1093/femsre/fuy012.
10

引用本文的文献

1
The Undeniable Potential of Thermophiles in Industrial Processes.
Int J Mol Sci. 2024 Jul 13;25(14):7685. doi: 10.3390/ijms25147685.
2
Rhizosphere Microorganisms Supply Availability of Soil Nutrients and Induce Plant Defense.
Microorganisms. 2024 Mar 11;12(3):558. doi: 10.3390/microorganisms12030558.
3
Laboratory investigation and core flood demonstration of enhanced biogenic methane generation from lignite.
Front Bioeng Biotechnol. 2024 Feb 19;12:1308308. doi: 10.3389/fbioe.2024.1308308. eCollection 2024.
5
Thermococcus kodakarensis provides a versatile hyperthermophilic archaeal platform for protein expression.
Methods Enzymol. 2021;659:243-273. doi: 10.1016/bs.mie.2021.06.014. Epub 2021 Jul 13.
6
Archaea: An Agro-Ecological Perspective.
Curr Microbiol. 2021 Jul;78(7):2510-2521. doi: 10.1007/s00284-021-02537-2. Epub 2021 May 21.
8
The biology of thermoacidophilic archaea from the order Sulfolobales.
FEMS Microbiol Rev. 2021 Aug 17;45(4). doi: 10.1093/femsre/fuaa063.
9
10
Recent Development of Extremophilic Bacteria and Their Application in Biorefinery.
Front Bioeng Biotechnol. 2020 Jun 12;8:483. doi: 10.3389/fbioe.2020.00483. eCollection 2020.

本文引用的文献

2
Electron bifurcation.
Curr Opin Chem Biol. 2016 Apr;31:146-52. doi: 10.1016/j.cbpa.2016.03.007. Epub 2016 Mar 23.
6
Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals.
Front Microbiol. 2015 Nov 5;6:1209. doi: 10.3389/fmicb.2015.01209. eCollection 2015.
8
Cellulosic ethanol production via consolidated bioprocessing at 75 °C by engineered Caldicellulosiruptor bescii.
Biotechnol Biofuels. 2015 Oct 6;8:163. doi: 10.1186/s13068-015-0346-4. eCollection 2015.
9
Expression of Heterologous Cellulases in Thermotoga sp. Strain RQ2.
Biomed Res Int. 2015;2015:304523. doi: 10.1155/2015/304523. Epub 2015 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验