Zazunov A, Buccheri F, Sodano P, Egger R
Institut für Theoretische Physik, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany.
International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59012-970 Natal, Brazil.
Phys Rev Lett. 2017 Feb 3;118(5):057001. doi: 10.1103/PhysRevLett.118.057001. Epub 2017 Feb 1.
We study Majorana devices featuring a competition between superconductivity and multichannel Kondo physics. Our proposal extends previous work on single-channel Kondo systems to a topologically nontrivial setting of a non-Fermi liquid type, where topological superconductor wires (with gap Δ) represent leads tunnel coupled to a Coulomb-blockaded Majorana box. On the box, a spin degree of freedom with Kondo temperature T_{K} is nonlocally defined in terms of Majorana states. For Δ≫T_{K}, the destruction of Kondo screening by superconductivity implies a 4π-periodic Josephson current-phase relation. Using a strong-coupling analysis in the opposite regime Δ≪T_{K}, we find a 6π-periodic Josephson relation for three leads, with critical current I_{c}≈eΔ^{2}/ℏT_{K}, corresponding to the transfer of fractionalized charges e^{*}=2e/3.
我们研究了具有超导性和多通道近藤物理相互竞争特性的马约拉纳器件。我们的提议将先前关于单通道近藤系统的工作扩展到了非费米液体类型的拓扑非平凡情形,其中拓扑超导线(能隙为Δ)代表与库仑阻塞的马约拉纳盒隧穿耦合的引线。在这个盒子上,具有近藤温度(T_{K})的自旋自由度是根据马约拉纳态非局域定义的。对于(Δ≫T_{K}),超导性对近藤屏蔽的破坏意味着(4π)周期的约瑟夫森电流 - 相位关系。在相反的(Δ≪T_{K}) regime中使用强耦合分析,我们发现对于三条引线存在(6π)周期的约瑟夫森关系,其临界电流(I_{c}≈eΔ^{2}/ℏT_{K}),对应于分数化电荷(e^{*}=2e/3)的转移。