Suppr超能文献

利用 SMS-EPI 实现柱状水平 fMRI 的超高分辨率人类大脑成像的极限推进。

Pushing the limits of ultra-high resolution human brain imaging with SMS-EPI demonstrated for columnar level fMRI.

机构信息

Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States; Advanced MRI Technologies, Sebastopol, CA, United States.

Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States; Advanced MRI Technologies, Sebastopol, CA, United States.

出版信息

Neuroimage. 2018 Jan 1;164:155-163. doi: 10.1016/j.neuroimage.2017.02.020. Epub 2017 Feb 14.

Abstract

Encoding higher spatial resolution in simultaneous multi-slice (SMS) EPI is highly dependent on gradient performance, high density receiver coil arrays and pulse sequence optimization. We simulate gradient amplitude and slew rate determination of EPI imaging performance in terms of minimum TE, echo spacing (ES) and spatial resolution. We discuss the effects of image zooming in pulse sequences that have been used for sub-millimeter resolutions and the trade-offs in using partial Fourier and parallel imaging to reduce TE, PSF and ES. Using optimizations for SMS EPI pulse sequences with available gradient and receiver hardware, experimental results in ultra-high resolution (UHR) (0.45-0.5mm isotropic) SMS-EPI fMRI and mapping ocular dominance columns (ODC) in human brain at 0.5 mm isotropic resolution are demonstrated. We discuss promising future directions of UHR fMRI.

摘要

在同时多层(SMS)EPI 中编码更高的空间分辨率高度依赖于梯度性能、高密度接收线圈阵列和脉冲序列优化。我们模拟了 EPI 成像性能的梯度幅度和上升时间,以最小的 TE、回波间隔(ES)和空间分辨率为指标。我们讨论了用于亚毫米分辨率的脉冲序列中的图像缩放效果,以及使用部分傅里叶和并行成像来减少 TE、PSF 和 ES 的权衡。使用可用梯度和接收器硬件的 SMS EPI 脉冲序列的优化,在超高分辨率(UHR)(0.45-0.5mm 各向同性)SMS-EPI fMRI 中进行了实验,并在 0.5mm 各向同性分辨率下展示了人类大脑中的眼优势柱(ODC)映射。我们讨论了 UHR fMRI 的有前途的未来方向。

相似文献

1
Pushing the limits of ultra-high resolution human brain imaging with SMS-EPI demonstrated for columnar level fMRI.
Neuroimage. 2018 Jan 1;164:155-163. doi: 10.1016/j.neuroimage.2017.02.020. Epub 2017 Feb 14.
3
Simultaneous multi-slice inverse imaging of the human brain.
Sci Rep. 2017 Dec 5;7(1):17019. doi: 10.1038/s41598-017-16976-0.
4
A circular echo planar sequence for fast volumetric fMRI.
Magn Reson Med. 2019 Mar;81(3):1685-1698. doi: 10.1002/mrm.27522. Epub 2018 Oct 1.
5
Techniques for blood volume fMRI with VASO: From low-resolution mapping towards sub-millimeter layer-dependent applications.
Neuroimage. 2018 Jan 1;164:131-143. doi: 10.1016/j.neuroimage.2016.11.039. Epub 2016 Nov 18.
7
Rapid submillimeter QSM and R* mapping using interleaved multishot 3D-EPI at 7 and 3 Tesla.
Magn Reson Med. 2024 Dec;92(6):2294-2311. doi: 10.1002/mrm.30216. Epub 2024 Jul 10.
8
High slew-rate head-only gradient for improving distortion in echo planar imaging: Preliminary experience.
J Magn Reson Imaging. 2016 Sep;44(3):653-64. doi: 10.1002/jmri.25210. Epub 2016 Feb 26.
9
Simultaneous Multi-Slice fMRI using spiral trajectories.
Neuroimage. 2014 May 15;92:8-18. doi: 10.1016/j.neuroimage.2014.01.056. Epub 2014 Feb 8.

引用本文的文献

1
Decoding of columnar-level organization across cortical depth using BOLD- and CBV-fMRI at 7 T.
bioRxiv. 2025 Aug 27:2023.09.28.560016. doi: 10.1101/2023.09.28.560016.
2
Unlocking near-whole-brain, layer-specific functional connectivity with 3D VAPER fMRI.
Imaging Neurosci (Camb). 2024 Apr 18;2. doi: 10.1162/imag_a_00140. eCollection 2024.
3
Combining the benefits of 3D acquisitions and spiral readouts for VASO fMRI at UHF.
Imaging Neurosci (Camb). 2024 Oct 7;2. doi: 10.1162/imag_a_00308. eCollection 2024.
4
Reassessment of peripheral nerve stimulation thresholds for the Impulse model-optimized asymmetric head gradient coil.
Magn Reson Med. 2025 Sep;94(3):1326-1338. doi: 10.1002/mrm.30523. Epub 2025 May 23.
6
High-resolution awake mouse fMRI at 14 tesla.
Elife. 2025 Jan 9;13:RP95528. doi: 10.7554/eLife.95528.
7
Exploring methodological frontiers in laminar fMRI.
Psychoradiology. 2024 Nov 22;4:kkae027. doi: 10.1093/psyrad/kkae027. eCollection 2024.
8
Differentiating BOLD and non-BOLD signals in fMRI time series using cross-cortical depth delay patterns.
bioRxiv. 2024 Dec 26:2024.12.26.628516. doi: 10.1101/2024.12.26.628516.
9
High Spatiotemporal Resolution Radial Encoding Single-Vessel fMRI.
Adv Sci (Weinh). 2024 Jul;11(26):e2309218. doi: 10.1002/advs.202309218. Epub 2024 Apr 30.
10
High-resolution awake mouse fMRI at 14 Tesla.
bioRxiv. 2024 Sep 23:2023.12.08.570803. doi: 10.1101/2023.12.08.570803.

本文引用的文献

1
Evaluation of SLIce Dithered Enhanced Resolution Simultaneous MultiSlice (SLIDER-SMS) for human fMRI.
Neuroimage. 2018 Jan 1;164:164-171. doi: 10.1016/j.neuroimage.2017.02.001. Epub 2017 Feb 7.
3
High slew-rate head-only gradient for improving distortion in echo planar imaging: Preliminary experience.
J Magn Reson Imaging. 2016 Sep;44(3):653-64. doi: 10.1002/jmri.25210. Epub 2016 Feb 26.
4
Interdigitated Color- and Disparity-Selective Columns within Human Visual Cortical Areas V2 and V3.
J Neurosci. 2016 Feb 10;36(6):1841-57. doi: 10.1523/JNEUROSCI.3518-15.2016.
5
Frequency preference and attention effects across cortical depths in the human primary auditory cortex.
Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):16036-41. doi: 10.1073/pnas.1507552112. Epub 2015 Dec 14.
7
Variable flip angle 3D-GRASE for high resolution fMRI at 7 tesla.
Magn Reson Med. 2016 Sep;76(3):897-904. doi: 10.1002/mrm.25979. Epub 2015 Sep 21.
8
Sub-millimeter T2 weighted fMRI at 7 T: comparison of 3D-GRASE and 2D SE-EPI.
Front Neurosci. 2015 May 5;9:163. doi: 10.3389/fnins.2015.00163. eCollection 2015.
9
A 32-channel combined RF and B0 shim array for 3T brain imaging.
Magn Reson Med. 2016 Jan;75(1):441-51. doi: 10.1002/mrm.25587. Epub 2015 Feb 17.
10
Wave-CAIPI for highly accelerated 3D imaging.
Magn Reson Med. 2015 Jun;73(6):2152-62. doi: 10.1002/mrm.25347. Epub 2014 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验