Suppr超能文献

甘油二烷基甘油四醚羟化对膜热稳定性影响的分子动力学模拟研究。

Molecular dynamics simulation study of the effect of glycerol dialkyl glycerol tetraether hydroxylation on membrane thermostability.

机构信息

Departamento de Geociencias, Universidad de los Andes, A.A. 4976 Bogotá, Colombia.

Department of Earth Sciences, Stellenbosch University, 7602 Matieland, South Africa.

出版信息

Biochim Biophys Acta Biomembr. 2017 May;1859(5):966-974. doi: 10.1016/j.bbamem.2017.02.009. Epub 2017 Feb 16.

Abstract

Archaeal tetraether membrane lipids span the whole membrane width and present two C isoprenoid chains bound by two glycerol groups (or one glycerol and calditol). These lipids confer stability and maintain the membrane fluidity in mesophile to extremophile environments, making them very attractive for biotechnological applications. The isoprenoid lipid composition in archaeal membranes varies with temperature, which has placed these lipids in the focus of paleo-climatological studies for over a decade. Non-hydroxylated isoprenoid archaeal lipids are typically used as paleo-thermometry proxies, but recently identified hydroxylated (OH) derivatives have also been proposed as temperature proxies. The relative abundance of hydroxylated lipids increases at lower temperatures, but the physiological function of the OH moiety remains unknown. Here we present molecular dynamics simulations of membranes formed by the acyclic glycerol-dialkyl-glycerol-tetraether caldarchaeol (GDGT-0), the most widespread archaeal core lipid, and its mono-hydroxylated variant (OH-GDGT-0) to better understand the physico-chemical properties conferred to the membrane by this additional moiety. The molecular dynamics simulations indicate that the additional OH group forms hydrogen bonds mainly with the sugar moieties of neighbouring lipids and with water molecules, effectively increasing the size of the polar headgroups. The hydroxylation also introduces local disorder that propagates along the entire alkyl chains, resulting in a slightly more fluid membrane. These changes would help to maintain trans-membrane transport in cold environments, explaining why the relative abundance of hydroxylated Archaea lipids increases at lower temperatures. The in silico approach aids to understand the underlying physiological mechanisms behind the hydroxylated lipid based paleo-thermometer recently proposed.

摘要

古菌四醚膜脂横跨整个膜宽,呈现两条由两个甘油基(或一个甘油基和卡尔代醇)结合的萜烯链。这些脂质在中温生物到极端环境中赋予了膜稳定性和流动性,使它们在生物技术应用中非常有吸引力。古菌膜中的异戊二烯脂质组成随温度变化而变化,这使得这些脂质在过去十年中成为古气候研究的焦点。未羟基化的古菌异戊二烯脂质通常用作古温度计的替代物,但最近发现的羟基化(OH)衍生物也被提议作为温度替代物。羟基化脂质的相对丰度随温度降低而增加,但 OH 部分的生理功能仍不清楚。在这里,我们对由无环甘油二烷基甘油四醚卡尔代醇(GDGT-0)和其单羟基化变体(OH-GDGT-0)组成的膜进行了分子动力学模拟,以更好地了解该额外部分赋予膜的物理化学性质。分子动力学模拟表明,额外的 OH 基团主要与相邻脂质的糖部分和水分子形成氢键,有效地增加了极性头基的大小。羟基化还引入了局部无序,沿整个烷基链传播,导致膜略微更具流动性。这些变化有助于在寒冷环境中维持跨膜运输,解释了为什么在低温下羟基化古菌脂质的相对丰度增加的原因。这种计算机模拟方法有助于理解最近提出的基于羟基化脂质的古温度计背后的潜在生理机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验