Suppr超能文献

利用BACK方法在斑马鱼中进行生殖系特异性Dgcr8基因敲除。

Germline-specific dgcr8 knockout in zebrafish using a BACK approach.

作者信息

Liu Yun, Zhu Zeyao, Ho Idy H T, Shi Yujian, Xie Yuxin, Li Jianzhen, Zhang Yong, Chan Matthew T V, Cheng Christopher H K

机构信息

State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, China.

School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.

出版信息

Cell Mol Life Sci. 2017 Jul;74(13):2503-2511. doi: 10.1007/s00018-017-2471-7. Epub 2017 Feb 21.

Abstract

Zebrafish is an important model to study developmental biology and human diseases. However, an effective approach to achieve spatial and temporal gene knockout in zebrafish has not been well established. In this study, we have developed a new approach, namely bacterial artificial chromosome-rescue-based knockout (BACK), to achieve conditional gene knockout in zebrafish using the Cre/loxP system. We have successfully deleted the DiGeorge syndrome critical region gene 8 (dgcr8) in zebrafish germ line and demonstrated that the maternal-zygotic dgcr8 (MZdgcr8) embryos exhibit MZdicer-like phenotypes with morphological defects which could be rescued by miR-430, indicating that canonical microRNAs play critical role in early development. Our findings establish that Cre/loxP-mediated tissue-specific gene knockout could be achieved using this BACK strategy and that canonical microRNAs play important roles in early embryonic development in zebrafish.

摘要

斑马鱼是研究发育生物学和人类疾病的重要模型。然而,在斑马鱼中实现时空基因敲除的有效方法尚未得到很好的确立。在本研究中,我们开发了一种新方法,即基于细菌人工染色体拯救的敲除(BACK),以利用Cre/loxP系统在斑马鱼中实现条件性基因敲除。我们已成功在斑马鱼生殖系中删除了22q11.2微缺失综合征关键区域基因8(dgcr8),并证明母源合子dgcr8(MZdgcr8)胚胎表现出具有形态缺陷的MZdicer样表型,这些缺陷可被miR-430挽救,表明经典微小RNA在早期发育中起关键作用。我们的研究结果表明,使用这种BACK策略可以实现Cre/loxP介导的组织特异性基因敲除,并且经典微小RNA在斑马鱼早期胚胎发育中起重要作用。

相似文献

1
Germline-specific dgcr8 knockout in zebrafish using a BACK approach.
Cell Mol Life Sci. 2017 Jul;74(13):2503-2511. doi: 10.1007/s00018-017-2471-7. Epub 2017 Feb 21.
3
Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430.
Curr Biol. 2006 Nov 7;16(21):2135-42. doi: 10.1016/j.cub.2006.08.086.
4
Targeted expression in zebrafish primordial germ cells by Cre/loxP and Gal4/UAS systems.
Mar Biotechnol (NY). 2013 Oct;15(5):526-39. doi: 10.1007/s10126-013-9505-4. Epub 2013 Mar 28.
5
A parental requirement for dual-specificity phosphatase 6 in zebrafish.
BMC Dev Biol. 2018 Mar 15;18(1):6. doi: 10.1186/s12861-018-0164-6.
6
The RNA-binding protein Igf2bp3 is critical for embryonic and germline development in zebrafish.
PLoS Genet. 2021 Jul 2;17(7):e1009667. doi: 10.1371/journal.pgen.1009667. eCollection 2021 Jul.
8
CRISPR/Cas9-mediated grna gene knockout leads to neurodevelopmental defects and motor behavior changes in zebrafish.
J Neurochem. 2021 May;157(3):520-531. doi: 10.1111/jnc.15307. Epub 2021 Feb 15.
9
Protein palmitoylation activate zygotic gene expression during the maternal-to-zygotic transition.
Biochem Biophys Res Commun. 2016 Jun 24;475(2):194-201. doi: 10.1016/j.bbrc.2016.05.074. Epub 2016 May 24.

引用本文的文献

1
Generation of Zebrafish Maternal Mutants via Oocyte-Specific Knockout System.
Bio Protoc. 2024 Nov 5;14(21):e5092. doi: 10.21769/BioProtoc.5092.
2
Circumventing Zygotic Lethality to Generate Maternal Mutants in Zebrafish.
Biology (Basel). 2022 Jan 10;11(1):102. doi: 10.3390/biology11010102.
6
Genetic Deletion of Disrupts Maternal-Zygotic Transition and Embryonic Body Plan.
Front Genet. 2020 Aug 4;11:853. doi: 10.3389/fgene.2020.00853. eCollection 2020.
8
Conditional mutagenesis by oligonucleotide-mediated integration of loxP sites in zebrafish.
PLoS Genet. 2018 Nov 14;14(11):e1007754. doi: 10.1371/journal.pgen.1007754. eCollection 2018 Nov.
9
Role of microRNAs in inner ear development and hearing loss.
Gene. 2019 Feb 20;686:49-55. doi: 10.1016/j.gene.2018.10.075. Epub 2018 Oct 31.
10
Versatile Genome Engineering Techniques Advance Human Ocular Disease Researches in Zebrafish.
Front Cell Dev Biol. 2018 Jul 12;6:75. doi: 10.3389/fcell.2018.00075. eCollection 2018.

本文引用的文献

1
Precise Editing of the Zebrafish Genome Made Simple and Efficient.
Dev Cell. 2016 Mar 21;36(6):654-67. doi: 10.1016/j.devcel.2016.02.015.
2
A Temporal Window for Signal Activation Dictates the Dimensions of a Nodal Signaling Domain.
Dev Cell. 2015 Oct 26;35(2):175-85. doi: 10.1016/j.devcel.2015.09.014.
3
Mutagenesis in Xenopus and Zebrafish using TALENs.
Methods Mol Biol. 2016;1338:207-27. doi: 10.1007/978-1-4939-2932-0_16.
4
A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish.
Dev Cell. 2015 Mar 23;32(6):756-64. doi: 10.1016/j.devcel.2015.01.032. Epub 2015 Mar 5.
5
CRISPR-Cas9 knockin mice for genome editing and cancer modeling.
Cell. 2014 Oct 9;159(2):440-55. doi: 10.1016/j.cell.2014.09.014. Epub 2014 Sep 25.
6
Temporal and spatial expression of the four Igf ligands and two Igf type 1 receptors in zebrafish during early embryonic development.
Gene Expr Patterns. 2014 Jul;15(2):104-11. doi: 10.1016/j.gep.2014.05.006. Epub 2014 Jun 11.
7
Development and applications of CRISPR-Cas9 for genome engineering.
Cell. 2014 Jun 5;157(6):1262-1278. doi: 10.1016/j.cell.2014.05.010.
8
CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish.
Methods. 2014 Sep;69(2):142-50. doi: 10.1016/j.ymeth.2014.03.027. Epub 2014 Apr 1.
9
A guide to genome engineering with programmable nucleases.
Nat Rev Genet. 2014 May;15(5):321-34. doi: 10.1038/nrg3686. Epub 2014 Apr 2.
10
A highly effective TALEN-mediated approach for targeted gene disruption in Xenopus tropicalis and zebrafish.
Methods. 2014 Aug 15;69(1):58-66. doi: 10.1016/j.ymeth.2014.02.011. Epub 2014 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验