Suppr超能文献

基于自我网络表征骨肉瘤转移中的生物标志物。

Characterizing biomarkers in osteosarcoma metastasis based on an ego-network.

作者信息

Liu Zhen, Song Yan

机构信息

Department of Orthopaedics, Heze Municipal Hospital, Caozhou Road, Heze, 274031, Shandong, People's Republic of China.

出版信息

Biotechnol Lett. 2017 Jun;39(6):841-848. doi: 10.1007/s10529-017-2305-6. Epub 2017 Feb 22.

Abstract

OBJECTIVES

To characterize biomarkers that underlie osteosarcoma (OS) metastasis based on an ego-network.

RESULTS

From the microarray data, we obtained 13,326 genes. By combining PPI data and microarray data, 10,520 shared genes were found and constructed into ego-networks. 17 significant ego-networks were identified with p < 0.05. In the pathway enrichment analysis, seven ego-networks were identified with the most significant pathway.

CONCLUSIONS

These significant ego-modules were potential biomarkers that reveal the potential mechanisms in OS metastasis, which may contribute to understanding cancer prognoses and providing new perspectives in the treatment of cancer.

摘要

目的

基于自我网络表征骨肉瘤(OS)转移的潜在生物标志物。

结果

从微阵列数据中,我们获得了13326个基因。通过整合蛋白质-蛋白质相互作用(PPI)数据和微阵列数据,发现了10520个共享基因并构建成自我网络。鉴定出17个显著性自我网络,p < 0.05。在通路富集分析中,鉴定出7个具有最显著通路的自我网络。

结论

这些显著性自我模块是揭示骨肉瘤转移潜在机制的潜在生物标志物,这可能有助于理解癌症预后并为癌症治疗提供新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验