Bayerisches Polymerinstitut (BPI) , Universitätsstraße 30, 95440 Bayreuth, Germany.
Biomacromolecules. 2017 Apr 10;18(4):1365-1372. doi: 10.1021/acs.biomac.7b00090. Epub 2017 Mar 6.
Spider dragline silk exhibits an extraordinary toughness and is typically composed of two types of major ampullate spidroins (MaSp1 and MaSp2), differing in their proline content and hydrophobicity. In this paper, we recombinantly produced an unusual but naturally occurring short major ampullate spidroin (MaSp1s) as a fusion construct between established Latrodectus hesperus terminal domains and the novel Cyrtophora moluccensis core domain. The sequence of the recombinant spidroin was engineered to guarantee high yields upon recombinant production and was named eMaSp1s. Its solution structure as well as the mechanical properties of wet-spun eMaSp1s fibers were examined. Structural characterization using CD- and FTIR spectroscopy showed a predominantly α-helical solution structure and a high ß-sheet content within fibers. Surprisingly, eMaSp1s fibers show similar mechanical properties as wet-spun fibers of other engineered spider silk proteins, albeit eMaSp1s has a lower molecular weight and not the typical sequence repeats in its core domain. Therefore, the findings provide insights into the molecular interplay necessary to obtain the typical silk fiber mechanics.
蜘蛛拖丝表现出非凡的韧性,通常由两种主要的壶腹状丝蛋白(MaSp1 和 MaSp2)组成,它们在脯氨酸含量和疏水性方面存在差异。在本文中,我们通过重组产生了一种不寻常但天然存在的短主要壶腹状丝蛋白(MaSp1s),它是 Latrodectus hesperus 末端结构域与新型 Cyrtophora moluccensis 核心结构域之间的融合构建体。重组丝蛋白的序列经过工程设计,以保证重组生产时的高产量,并将其命名为 eMaSp1s。我们研究了其溶液结构以及湿法纺制的 eMaSp1s 纤维的力学性能。使用 CD 和 FTIR 光谱进行结构表征表明,溶液结构主要为α-螺旋,纤维内的β-折叠含量较高。令人惊讶的是,eMaSp1s 纤维表现出与其他工程化蜘蛛丝蛋白湿法纺制纤维相似的力学性能,尽管 eMaSp1s 的分子量较低,且其核心结构域中没有典型的序列重复。因此,这些发现为获得典型的丝纤维力学性能所需的分子相互作用提供了深入的了解。