Suppr超能文献

人表皮生长因子受体2(HER2)抑制剂生物活性的构效关系和定量构效关系研究

SAR and QSAR study on the bioactivities of human epidermal growth factor receptor-2 (HER2) inhibitors.

作者信息

Qu D, Yan A, Zhang J S

机构信息

a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing , P.R. China.

b The High School Affiliated to Renmin University of China , Beijing , P.R. China.

出版信息

SAR QSAR Environ Res. 2017 Feb;28(2):111-132. doi: 10.1080/1062936X.2017.1284898. Epub 2017 Feb 14.

Abstract

In this paper, structure-activity relationship (SAR, classification) and quantitative structure-activity relationship (QSAR) models have been established to predict the bioactivity of human epidermal growth factor receptor-2 (HER2) inhibitors. For the SAR study, we established six SAR (or classification) models to distinguish highly and weakly active HER2 inhibitors. The dataset contained 868 HER2 inhibitors, which was split into a training set including 580 inhibitors and a test set including 288 inhibitors by a Kohonen's self-organizing map (SOM), or a random method. The SAR models were performed using support vector machine (SVM), random forest (RF) and multilayer perceptron (MLP) methods. Among the six models, SVM models obtained superior results compared with other models. The prediction accuracy of the best model (model 1A) was 90.27% and the Matthews correlation coefficient (MCC) was 0.80 on the test set. For the QSAR study, we chose 286 HER2 inhibitors to establish six quantitative prediction models using MLR, SVM and MLP methods. The correlation coefficient (r) of the best model (model 4B) was 0.92 on the test set. The descriptors analysis showed that HAccN, lone pair electronegativity and π electronegativity were closely related to the bioactivity of HER2 inhibitors.

摘要

在本文中,已建立结构活性关系(SAR,分类)和定量结构活性关系(QSAR)模型来预测人表皮生长因子受体2(HER2)抑制剂的生物活性。对于SAR研究,我们建立了六个SAR(或分类)模型,以区分高活性和低活性的HER2抑制剂。数据集包含868种HER2抑制剂,通过Kohonen自组织映射(SOM)或随机方法将其分为一个包含580种抑制剂的训练集和一个包含288种抑制剂的测试集。使用支持向量机(SVM)、随机森林(RF)和多层感知器(MLP)方法执行SAR模型。在这六个模型中,SVM模型与其他模型相比获得了更好的结果。最佳模型(模型1A)在测试集上的预测准确率为90.27%,马修斯相关系数(MCC)为0.80。对于QSAR研究,我们选择286种HER2抑制剂,使用MLR、SVM和MLP方法建立了六个定量预测模型。最佳模型(模型4B)在测试集上的相关系数(r)为0.92。描述符分析表明,HAccN、孤对电负性和π电负性与HER2抑制剂的生物活性密切相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验