Zee D S, Jareonsettasin P, Leigh R J
Department of Neurology, Johns Hopkins Hospital, 600 N. Wolfe St, Baltimore, MD 21287, USA
Oxford University Hospitals, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
Philos Trans R Soc Lond B Biol Sci. 2017 Apr 19;372(1718). doi: 10.1098/rstb.2016.0199.
A fundamental challenge to the brain is how to prevent intrusive movements when quiet is needed. Unwanted limb movements such as tremor impair fine motor control and unwanted eye drifts such as nystagmus impair vision. A stable platform is also necessary to launch accurate movements. Accordingly, nature has designed control systems with agonist (excitation) and antagonist (inhibition) muscle pairs functioning in push-pull, around a steady level of balanced tonic activity, the Sensory information can be organized similarly, as in the vestibulo-ocular reflex, which generates eye movements that compensate for head movements. The semicircular canals, working in coplanar pairs, one in each labyrinth, are reciprocally excited and inhibited as they transduce head rotations. The relative change in activity is relayed to the vestibular nuclei, which operate around a set-point of stable balanced activity. When a pathological imbalance occurs, producing unwanted nystagmus without head movement, an adaptive mechanism restores the proper set-point and eliminates the nystagmus. Here we used 90 min of continuous 7 T magnetic field labyrinthine stimulation (MVS) in normal humans to produce sustained nystagmus simulating vestibular imbalance. We identified multiple time-scale processes towards a new zero set-point showing that MVS is an excellent paradigm to investigate the neurobiology of set-point adaptation.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'.
大脑面临的一个基本挑战是,在需要安静时如何防止出现干扰性动作。诸如震颤之类的不必要肢体动作会损害精细运动控制,而诸如眼球震颤之类的不必要眼球漂移会损害视力。一个稳定的平台对于发起精确动作也是必要的。因此,大自然设计了控制系统,其中激动肌(兴奋)和拮抗肌(抑制)以推挽方式运作,围绕着稳定的平衡紧张性活动水平。感觉信息也可以类似地组织起来,比如在前庭眼反射中,该反射会产生补偿头部运动的眼球运动。半规管以共面的方式成对工作,每个内耳迷路中有一对,在转换头部旋转时会相互兴奋和抑制。活动的相对变化会传递到前庭核,前庭核围绕着稳定平衡活动的设定点运作。当出现病理性失衡,在没有头部运动的情况下产生不必要的眼球震颤时,一种适应性机制会恢复适当的设定点并消除眼球震颤。在这里,我们对正常人类进行了90分钟的连续7T磁场迷路刺激(MVS),以产生模拟前庭失衡的持续性眼球震颤。我们确定了多个时间尺度的过程,这些过程趋向于一个新的零设定点,这表明MVS是研究设定点适应性神经生物学的一个绝佳范例。本文是主题为“运动抑制:大脑停止和静止的机制”的特刊的一部分。