Suppr超能文献

眼稳定性与设定点适应。

Ocular stability and set-point adaptation.

作者信息

Zee D S, Jareonsettasin P, Leigh R J

机构信息

Department of Neurology, Johns Hopkins Hospital, 600 N. Wolfe St, Baltimore, MD 21287, USA

Oxford University Hospitals, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2017 Apr 19;372(1718). doi: 10.1098/rstb.2016.0199.

Abstract

A fundamental challenge to the brain is how to prevent intrusive movements when quiet is needed. Unwanted limb movements such as tremor impair fine motor control and unwanted eye drifts such as nystagmus impair vision. A stable platform is also necessary to launch accurate movements. Accordingly, nature has designed control systems with agonist (excitation) and antagonist (inhibition) muscle pairs functioning in push-pull, around a steady level of balanced tonic activity, the Sensory information can be organized similarly, as in the vestibulo-ocular reflex, which generates eye movements that compensate for head movements. The semicircular canals, working in coplanar pairs, one in each labyrinth, are reciprocally excited and inhibited as they transduce head rotations. The relative change in activity is relayed to the vestibular nuclei, which operate around a set-point of stable balanced activity. When a pathological imbalance occurs, producing unwanted nystagmus without head movement, an adaptive mechanism restores the proper set-point and eliminates the nystagmus. Here we used 90 min of continuous 7 T magnetic field labyrinthine stimulation (MVS) in normal humans to produce sustained nystagmus simulating vestibular imbalance. We identified multiple time-scale processes towards a new zero set-point showing that MVS is an excellent paradigm to investigate the neurobiology of set-point adaptation.This article is part of the themed issue 'Movement suppression: brain mechanisms for stopping and stillness'.

摘要

大脑面临的一个基本挑战是,在需要安静时如何防止出现干扰性动作。诸如震颤之类的不必要肢体动作会损害精细运动控制,而诸如眼球震颤之类的不必要眼球漂移会损害视力。一个稳定的平台对于发起精确动作也是必要的。因此,大自然设计了控制系统,其中激动肌(兴奋)和拮抗肌(抑制)以推挽方式运作,围绕着稳定的平衡紧张性活动水平。感觉信息也可以类似地组织起来,比如在前庭眼反射中,该反射会产生补偿头部运动的眼球运动。半规管以共面的方式成对工作,每个内耳迷路中有一对,在转换头部旋转时会相互兴奋和抑制。活动的相对变化会传递到前庭核,前庭核围绕着稳定平衡活动的设定点运作。当出现病理性失衡,在没有头部运动的情况下产生不必要的眼球震颤时,一种适应性机制会恢复适当的设定点并消除眼球震颤。在这里,我们对正常人类进行了90分钟的连续7T磁场迷路刺激(MVS),以产生模拟前庭失衡的持续性眼球震颤。我们确定了多个时间尺度的过程,这些过程趋向于一个新的零设定点,这表明MVS是研究设定点适应性神经生物学的一个绝佳范例。本文是主题为“运动抑制:大脑停止和静止的机制”的特刊的一部分。

相似文献

1
Ocular stability and set-point adaptation.
Philos Trans R Soc Lond B Biol Sci. 2017 Apr 19;372(1718). doi: 10.1098/rstb.2016.0199.
2
Multiple Time Courses of Vestibular Set-Point Adaptation Revealed by Sustained Magnetic Field Stimulation of the Labyrinth.
Curr Biol. 2016 May 23;26(10):1359-66. doi: 10.1016/j.cub.2016.03.066. Epub 2016 May 12.
3
Acute unilateral loss of vestibular function.
Handb Clin Neurol. 2016;137:219-29. doi: 10.1016/B978-0-444-63437-5.00015-7.
4
Effects of Sustained Otolith-Only Stimulation on Post-Rotational Nystagmus.
Cerebellum. 2017 Jun;16(3):683-690. doi: 10.1007/s12311-017-0847-8.
5
Vestibular function in periodic alternating nystagmus.
Brain. 1990 Oct;113 ( Pt 5):1425-39. doi: 10.1093/brain/113.5.1425.
6
Vestibulo-ocular reflex.
Dev Ophthalmol. 2007;40:35-51. doi: 10.1159/000100348.
7
Assessment of vestibulo-ocular reflexes in congenital nystagmus.
Ann Neurol. 1985 Feb;17(2):129-36. doi: 10.1002/ana.410170205.
8
Nodulo-uvular control of central vestibular dynamics determines spatial orientation of the angular vestibulo-ocular reflex.
Ann N Y Acad Sci. 1996 Jun 19;781:364-84. doi: 10.1111/j.1749-6632.1996.tb15713.x.
9
Mouse Magnetic-field Nystagmus in Strong Static Magnetic Fields Is Dependent on the Presence of Nox3.
Otol Neurotol. 2018 Dec;39(10):e1150-e1159. doi: 10.1097/MAO.0000000000002024.
10
[Is visual experience necessary for the maturation of vestibular control of eye movement].
C R Acad Hebd Seances Acad Sci D. 1975 Apr 21;280(15):1805-8.

引用本文的文献

1
Vision toolkit part 1. Neurophysiological foundations and experimental paradigms in eye-tracking research: a review.
Front Physiol. 2025 Jun 19;16:1571534. doi: 10.3389/fphys.2025.1571534. eCollection 2025.
2
Concomitant long-arm cupulolithiasis and short-arm canalithiasis involving the posterior canal.
J Neurol. 2025 Jan 15;272(2):117. doi: 10.1007/s00415-024-12881-5.
3
Amplification of vibration induced nystagmus in patients with peripheral vestibular loss by head tilt.
Front Neurol. 2024 Oct 16;15:1420699. doi: 10.3389/fneur.2024.1420699. eCollection 2024.
4
Persistence of primitive reflexes associated with asymmetries in fixation and ocular motility values.
J Eye Mov Res. 2024 Aug 19;17(2). doi: 10.16910/jemr.17.2.5. eCollection 2024.
5
Sustained bias of spatial attention in a 3 T MRI scanner.
Sci Rep. 2024 Jun 3;14(1):12657. doi: 10.1038/s41598-024-62981-5.
6
Longer duration entry mitigates nystagmus and vertigo in 7-Tesla MRI.
Front Neurol. 2023 Nov 16;14:1255105. doi: 10.3389/fneur.2023.1255105. eCollection 2023.
8
Optokinetic set-point adaptation functions as an internal dynamic calibration mechanism for oculomotor disequilibrium.
iScience. 2022 Oct 12;25(11):105335. doi: 10.1016/j.isci.2022.105335. eCollection 2022 Nov 18.
9
Persistent horizontal and vertical, MR-induced nystagmus in resting state Human Connectome Project data.
Neuroimage. 2022 Jul 15;255:119170. doi: 10.1016/j.neuroimage.2022.119170. Epub 2022 Apr 1.
10
Modeling the interaction among three cerebellar disorders of eye movements: periodic alternating, gaze-evoked and rebound nystagmus.
J Comput Neurosci. 2021 Aug;49(3):295-307. doi: 10.1007/s10827-021-00790-9. Epub 2021 May 18.

本文引用的文献

1
Cervical dystonia: a neural integrator disorder.
Brain. 2016 Oct;139(Pt 10):2590-2599. doi: 10.1093/brain/aww141. Epub 2016 Jun 20.
2
Multiple Time Courses of Vestibular Set-Point Adaptation Revealed by Sustained Magnetic Field Stimulation of the Labyrinth.
Curr Biol. 2016 May 23;26(10):1359-66. doi: 10.1016/j.cub.2016.03.066. Epub 2016 May 12.
3
Vestibular compensation: the neuro-otologist's best friend.
J Neurol. 2016 Apr;263 Suppl 1:S54-64. doi: 10.1007/s00415-015-7903-4. Epub 2016 Apr 15.
4
Vestibular stimulation by magnetic fields.
Ann N Y Acad Sci. 2015 Apr;1343(1):69-79. doi: 10.1111/nyas.12702. Epub 2015 Mar 3.
5
Contribution of supraspinal systems to generation of automatic postural responses.
Front Integr Neurosci. 2014 Oct 1;8:76. doi: 10.3389/fnint.2014.00076. eCollection 2014.
6
A dynamic model of the eye nystagmus response to high magnetic fields.
Phys Med Biol. 2014 Feb 7;59(3):631-45. doi: 10.1088/0031-9155/59/3/631. Epub 2014 Jan 17.
7
Keeping your head on target.
J Neurosci. 2013 Jul 3;33(27):11281-95. doi: 10.1523/JNEUROSCI.3415-12.2013.
8
Magnetic field effects on the vestibular system: calculation of the pressure on the cupula due to ionic current-induced Lorentz force.
Phys Med Biol. 2012 Jul 21;57(14):4477-87. doi: 10.1088/0031-9155/57/14/4477. Epub 2012 Jun 22.
9
Visual and vestibular determinants of the translational vestibulo-ocular reflex.
Ann N Y Acad Sci. 2011 Sep;1233:263-70. doi: 10.1111/j.1749-6632.2011.06148.x.
10
What Sherrington missed: the ubiquity of the neural integrator.
Ann N Y Acad Sci. 2011 Sep;1233:208-13. doi: 10.1111/j.1749-6632.2011.06110.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验