Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France.
Mol Psychiatry. 2018 Jun;23(6):1453-1465. doi: 10.1038/mp.2016.260. Epub 2017 Feb 28.
Bipolar disorder (BD) is a progressive psychiatric disorder with more than 3% prevalence worldwide. Affected individuals experience recurrent episodes of depression and mania, disrupting normal life and increasing the risk of suicide greatly. The complexity and genetic heterogeneity of psychiatric disorders have challenged the development of animal and cellular models. We recently reported that hippocampal dentate gyrus (DG) neurons differentiated from induced pluripotent stem cell (iPSC)-derived fibroblasts of BD patients are electrophysiologically hyperexcitable. Here we used iPSCs derived from Epstein-Barr virus-immortalized B-lymphocytes to verify that the hyperexcitability of DG-like neurons is reproduced in this different cohort of patients and cells. Lymphocytes are readily available for research with a large number of banked lines with associated patient clinical description. We used whole-cell patch-clamp recordings of over 460 neurons to characterize neurons derived from control individuals and BD patients. Extensive functional analysis showed that intrinsic cell parameters are very different between the two groups of BD neurons, those derived from lithium (Li)-responsive (LR) patients and those derived from Li-non-responsive (NR) patients, which led us to partition our BD neurons into two sub-populations of cells and suggested two different subdisorders. Training a Naïve Bayes classifier with the electrophysiological features of patients whose responses to Li are known allows for accurate classification with more than 92% success rate for a new patient whose response to Li is unknown. Despite their very different functional profiles, both populations of neurons share a large, fast after-hyperpolarization (AHP). We therefore suggest that the large, fast AHP is a key feature of BD and a main contributor to the fast, sustained spiking abilities of BD neurons. Confirming our previous report with fibroblast-derived DG neurons, chronic Li treatment reduced the hyperexcitability in the lymphoblast-derived LR group but not in the NR group, strengthening the validity and utility of this new human cellular model of BD.
双相情感障碍(BD)是一种全球性患病率超过 3%的进行性精神障碍。受影响的个体经历反复的抑郁和躁狂发作,扰乱正常生活并大大增加自杀风险。精神疾病的复杂性和遗传异质性对动物和细胞模型的发展提出了挑战。我们最近报道称,源自 BD 患者诱导多能干细胞(iPSC)衍生成纤维细胞的海马齿状回(DG)神经元在电生理学上表现出过度兴奋。在这里,我们使用源自 Epstein-Barr 病毒永生化 B 淋巴细胞的 iPSC,验证了这种 DG 样神经元的过度兴奋性在不同患者和细胞群体中得以重现。淋巴细胞易于用于研究,有大量的银行存款线和相关的患者临床描述。我们使用全细胞膜片钳记录了超过 460 个神经元,以对来自对照个体和 BD 患者的神经元进行特征描述。广泛的功能分析表明,两组 BD 神经元之间的内在细胞参数存在很大差异,一组源自锂(Li)反应性(LR)患者,另一组源自 Li 非反应性(NR)患者,这导致我们将我们的 BD 神经元分为两类细胞亚群,并表明存在两种不同的亚障碍。使用 Naïve Bayes 分类器对其 Li 反应已知的患者的电生理特征进行训练,可以对 Li 反应未知的新患者进行准确分类,成功率超过 92%。尽管它们具有非常不同的功能特征,但这两种神经元群体都具有大的、快速的后超极化(AHP)。因此,我们认为大的、快速的 AHP 是 BD 的一个关键特征,也是 BD 神经元快速、持续放电能力的主要贡献者。这一发现与我们之前用成纤维细胞衍生的 DG 神经元的研究结果一致,慢性 Li 处理可降低源自淋巴母细胞的 LR 组的过度兴奋性,但不能降低 NR 组的过度兴奋性,从而加强了这种新的 BD 人类细胞模型的有效性和实用性。