Suppr超能文献

基于表面肌电的跨会话手势识别增强的深度域自适应。

Surface EMG-Based Inter-Session Gesture Recognition Enhanced by Deep Domain Adaptation.

机构信息

State Key Lab of CAD&CG, College of Computer Science, Zhejiang University, Hangzhou 310027, China.

College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.

出版信息

Sensors (Basel). 2017 Feb 24;17(3):458. doi: 10.3390/s17030458.

Abstract

High-density surface electromyography (HD-sEMG) is to record muscles' electrical activity from a restricted area of the skin by using two dimensional arrays of closely spaced electrodes. This technique allows the analysis and modelling of sEMG signals in both the temporal and spatial domains, leading to new possibilities for studying next-generation muscle-computer interfaces (MCIs). sEMG-based gesture recognition has usually been investigated in an intra-session scenario, and the absence of a standard benchmark database limits the use of HD-sEMG in real-world MCI. To address these problems, we present a benchmark database of HD-sEMG recordings of hand gestures performed by 23 participants, based on an 8 × 16 electrode array, and propose a deep-learning-based domain adaptation framework to enhance sEMG-based inter-session gesture recognition. Experiments on NinaPro, CSL-HDEMG and our CapgMyo dataset validate that our approach outperforms state-of-the-arts methods on intra-session and effectively improved inter-session gesture recognition.

摘要

高密度表面肌电图(HD-sEMG)通过使用二维的、紧密间隔的电极阵列,从皮肤的一个受限区域记录肌肉的电活动。这项技术允许对 sEMG 信号进行时间和空间域的分析和建模,为下一代肌肉计算机接口(MCIs)的研究带来了新的可能性。基于 sEMG 的手势识别通常在会话内场景中进行研究,而缺乏标准的基准数据库限制了 HD-sEMG 在实际 MCIs 中的应用。为了解决这些问题,我们提出了一个基于 8×16 电极阵列的由 23 名参与者进行的手部运动的 HD-sEMG 记录基准数据库,并提出了一种基于深度学习的域自适应框架,以增强基于 sEMG 的会话间手势识别。在 NinaPro、CSL-HDEMG 和我们的 CapgMyo 数据集上的实验验证了我们的方法在会话内优于最先进的方法,并有效地提高了会话间手势识别的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e230/5375744/8d3e8fd551d7/sensors-17-00458-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验