Suppr超能文献

信号介导的卵子发生过程中减数分裂前期I及转换的调控

Signaling-Mediated Regulation of Meiotic Prophase I and Transition During Oogenesis.

作者信息

Arur Swathi

机构信息

Department of Genetics, UT M.D. Anderson Cancer Center, Houston, TX, USA.

出版信息

Results Probl Cell Differ. 2017;59:101-123. doi: 10.1007/978-3-319-44820-6_4.

Abstract

Generation of healthy oocytes requires coordinated regulation of multiple cellular events and signaling pathways. Oocytes undergo a unique developmental growth and differentiation pattern interspersed with long periods of arrest. Oocytes from almost all species arrest in prophase I of oogenesis that allows for long period of growth and differentiation essential for normal oocyte development. Depending on species, oocytes that transit from prophase I to meiosis I also arrest at meiosis I for fairly long periods of time and then undergo a second arrest at meiosis II that is completed upon fertilization. While there are species-specific differences in C. elegans, D. melanogaster, and mammalian oocytes in stages of prophase I, meiosis I, or meiosis II arrest, in all cases cell signaling pathways coordinate the developmental events controlling oocyte growth and differentiation to regulate these crucial phases of transition. In particular, the ERK MAP kinase signaling pathway, cyclic AMP second messengers, and the cell cycle regulators CDK1/cyclin B are key signaling pathways that seem evolutionarily conserved in their control of oocyte growth and meiotic maturation across species. Here, I identify the common themes and differences in the regulation of key meiotic events during oocyte growth and maturation.

摘要

健康卵母细胞的生成需要多种细胞事件和信号通路的协调调控。卵母细胞经历独特的发育生长和分化模式,其间穿插着长时间的停滞期。几乎所有物种的卵母细胞在卵子发生的减数分裂前期I停滞,这使得长时间的生长和分化对于正常卵母细胞发育至关重要。根据物种不同,从减数分裂前期I过渡到减数分裂I的卵母细胞也会在减数分裂I停滞相当长的时间,然后在减数分裂II经历第二次停滞,受精时完成减数分裂II。虽然秀丽隐杆线虫、黑腹果蝇和哺乳动物卵母细胞在减数分裂前期I、减数分裂I或减数分裂II停滞阶段存在物种特异性差异,但在所有情况下,细胞信号通路都会协调控制卵母细胞生长和分化的发育事件,以调节这些关键的过渡阶段。特别是,ERK丝裂原活化蛋白激酶信号通路、环磷酸腺苷第二信使以及细胞周期调节因子CDK1/细胞周期蛋白B是关键的信号通路,在跨物种控制卵母细胞生长和减数分裂成熟方面似乎在进化上是保守的。在此,我确定了卵母细胞生长和成熟过程中关键减数分裂事件调控的共同主题和差异。

相似文献

1
Signaling-Mediated Regulation of Meiotic Prophase I and Transition During Oogenesis.
Results Probl Cell Differ. 2017;59:101-123. doi: 10.1007/978-3-319-44820-6_4.
2
Control of oocyte meiotic maturation in C. elegans.
Semin Cell Dev Biol. 2018 Dec;84:90-99. doi: 10.1016/j.semcdb.2017.12.005. Epub 2017 Dec 26.
3
Regulation of oocyte maturation: Role of conserved ERK signaling.
Mol Reprod Dev. 2022 Sep;89(9):353-374. doi: 10.1002/mrd.23637. Epub 2022 Jul 31.
4
Developmental control of oocyte maturation and egg activation in metazoan models.
Cold Spring Harb Perspect Biol. 2011 Oct 1;3(10):a005553. doi: 10.1101/cshperspect.a005553.
6
Molecular Mechanisms of Prophase I Meiotic Arrest Maintenance and Meiotic Resumption in Mammalian Oocytes.
Reprod Sci. 2019 Nov;26(11):1519-1537. doi: 10.1177/1933719118765974. Epub 2018 Mar 27.
9
Zinc maintains prophase I arrest in mouse oocytes through regulation of the MOS-MAPK pathway.
Biol Reprod. 2012 Jul 1;87(1):11, 1-12. doi: 10.1095/biolreprod.112.099390. Print 2012 Jul.
10
Start me up: cell signaling and the journey from oocyte to embryo in C. elegans.
Dev Dyn. 2006 Mar;235(3):571-85. doi: 10.1002/dvdy.20662.

引用本文的文献

3
Loss of function of male-specific lethal 3 (Msl3) does not affect spermatogenesis in rodents.
Dev Dyn. 2024 May;253(5):453-466. doi: 10.1002/dvdy.669. Epub 2023 Oct 17.
5
Identification and Characterization of in Pearl Mussel and Its Role in Gonadal Development.
Biomolecules. 2023 Jun 1;13(6):931. doi: 10.3390/biom13060931.
6
Brown adipose tissue-derived exosomes delay fertility decline in aging mice.
Front Endocrinol (Lausanne). 2023 May 25;14:1180104. doi: 10.3389/fendo.2023.1180104. eCollection 2023.
7
Regulation of oocyte maturation: Role of conserved ERK signaling.
Mol Reprod Dev. 2022 Sep;89(9):353-374. doi: 10.1002/mrd.23637. Epub 2022 Jul 31.
8
Quantitative models for building and growing fated small cell networks.
Interface Focus. 2022 Jun 10;12(4):20210082. doi: 10.1098/rsfs.2021.0082. eCollection 2022 Aug 6.
9
The PAF1 complex cell autonomously promotes oogenesis in Caenorhabditis elegans.
Genes Cells. 2022 Jun;27(6):409-420. doi: 10.1111/gtc.12938. Epub 2022 Apr 27.
10
The time is ripe for oocyte in vitro maturation.
J Assist Reprod Genet. 2021 Jun;38(6):1281-1283. doi: 10.1007/s10815-021-02209-x. Epub 2021 May 8.

本文引用的文献

2
A Transport Model for Estimating the Time Course of ERK Activation in the C. elegans Germline.
Biophys J. 2015 Dec 1;109(11):2436-45. doi: 10.1016/j.bpj.2015.10.021.
3
Drosophila melanogaster Oogenesis: An Overview.
Methods Mol Biol. 2015;1328:1-20. doi: 10.1007/978-1-4939-2851-4_1.
4
Specifying and protecting germ cell fate.
Nat Rev Mol Cell Biol. 2015 Jul;16(7):406-16. doi: 10.1038/nrm4009.
5
Cyclic AMP in oocytes controls meiotic prophase I and primordial folliculogenesis in the perinatal mouse ovary.
Development. 2015 Jan 15;142(2):343-51. doi: 10.1242/dev.112755. Epub 2014 Dec 11.
8
Translational control of the oogenic program by components of OMA ribonucleoprotein particles in Caenorhabditis elegans.
Genetics. 2014 Dec;198(4):1513-33. doi: 10.1534/genetics.114.168823. Epub 2014 Sep 26.
9
DAF-2 and ERK couple nutrient availability to meiotic progression during Caenorhabditis elegans oogenesis.
Dev Cell. 2013 Oct 28;27(2):227-240. doi: 10.1016/j.devcel.2013.09.008. Epub 2013 Oct 10.
10
Control of oocyte growth and meiotic maturation in Caenorhabditis elegans.
Adv Exp Med Biol. 2013;757:277-320. doi: 10.1007/978-1-4614-4015-4_10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验