Suppr超能文献

鞭毛内运输与纤毛动力学

Intraflagellar Transport and Ciliary Dynamics.

作者信息

Ishikawa Hiroaki, Marshall Wallace F

机构信息

Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158.

出版信息

Cold Spring Harb Perspect Biol. 2017 Mar 1;9(3):a021998. doi: 10.1101/cshperspect.a021998.

Abstract

Cilia and flagella are microtubule-based organelles whose assembly requires a motile process, known as intraflagellar transport (IFT), to bring tubulin and other components to the distal tip of the growing structure. The IFT system uses a multiprotein complex with components that appear to be specialized for the transport of different sets of cargo proteins. The mechanisms by which cargo is selected for ciliary import and transport by IFT remain an area of active research. The complex dynamics of cilia and flagella are under constant regulation to ensure proper length control, and this regulation appears to involve regulation at the stage of IFT injection into the flagellum, as well as regulation of flagellar disassembly and, possibly, of cargo binding. Cilia and flagella thus represent a convenient model system to study how multiple motile and signaling pathways cooperate to control the assembly and dynamics of a complex cellular structure.

摘要

纤毛和鞭毛是以微管为基础的细胞器,其组装需要一个动态过程,即鞭毛内运输(IFT),将微管蛋白和其他成分带到生长结构的远端。IFT系统使用一种多蛋白复合物,其成分似乎专门用于运输不同组的货物蛋白。货物被IFT选择用于纤毛导入和运输的机制仍然是一个活跃的研究领域。纤毛和鞭毛的复杂动态受到持续调节,以确保适当的长度控制,这种调节似乎涉及在IFT注入鞭毛阶段的调节,以及鞭毛拆卸的调节,可能还有货物结合的调节。因此,纤毛和鞭毛代表了一个方便的模型系统,用于研究多个运动和信号通路如何协同控制复杂细胞结构的组装和动态。

相似文献

1
Intraflagellar Transport and Ciliary Dynamics.
Cold Spring Harb Perspect Biol. 2017 Mar 1;9(3):a021998. doi: 10.1101/cshperspect.a021998.
2
Intraflagellar transport and the flagellar tip complex.
J Cell Biochem. 2005 Feb 1;94(2):266-72. doi: 10.1002/jcb.20323.
3
Protein transport in growing and steady-state cilia.
Traffic. 2017 May;18(5):277-286. doi: 10.1111/tra.12474. Epub 2017 Mar 29.
4
Microtubule-depolymerizing kinesins in the regulation of assembly, disassembly, and length of cilia and flagella.
Int Rev Cell Mol Biol. 2015;317:241-65. doi: 10.1016/bs.ircmb.2015.01.008. Epub 2015 Mar 5.
5
Avalanche-like behavior in ciliary import.
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3925-30. doi: 10.1073/pnas.1217354110. Epub 2013 Feb 19.
6
Diffusion as a Ruler: Modeling Kinesin Diffusion as a Length Sensor for Intraflagellar Transport.
Biophys J. 2018 Feb 6;114(3):663-674. doi: 10.1016/j.bpj.2017.11.3784.
7
Ciliary Length Sensing Regulates IFT Entry via Changes in FLA8/KIF3B Phosphorylation to Control Ciliary Assembly.
Curr Biol. 2018 Aug 6;28(15):2429-2435.e3. doi: 10.1016/j.cub.2018.05.069. Epub 2018 Jul 26.
8
Intraflagellar transport.
Annu Rev Cell Dev Biol. 2003;19:423-43. doi: 10.1146/annurev.cellbio.19.111401.091318.
9
Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling.
Curr Top Dev Biol. 2008;85:23-61. doi: 10.1016/S0070-2153(08)00802-8.
10
Testing the ion-current model for flagellar length sensing and IFT regulation.
Elife. 2023 Jan 13;12:e82901. doi: 10.7554/eLife.82901.

引用本文的文献

1
Hedgehog pathway, cell cycle, and primary cilium.
Cell Death Discov. 2025 Jul 3;11(1):302. doi: 10.1038/s41420-025-02605-7.
2
The human ciliopathy protein RSG1 links the CPLANE complex to transition zone architecture.
Nat Commun. 2025 Jul 1;16(1):5701. doi: 10.1038/s41467-025-61005-8.
5
Role of intraflagellar transport protein IFT140 in the formation and function of motile cilia in mammals.
Cell Mol Life Sci. 2025 May 10;82(1):198. doi: 10.1007/s00018-025-05710-z.
6
Giardia intraflagellar transport protein 88 is involved in flagella formation.
Parasites Hosts Dis. 2025 Feb;63(1):12-24. doi: 10.3347/PHD.24064. Epub 2025 Feb 25.
7
A primary cilia-autophagy axis in hippocampal neurons is essential to maintain cognitive resilience.
Nat Aging. 2025 Mar;5(3):450-467. doi: 10.1038/s43587-024-00791-0. Epub 2025 Feb 21.
10
The Primary Cilia are Associated with the Axon Initial Segment in Neurons.
Adv Sci (Weinh). 2025 Mar;12(9):e2407405. doi: 10.1002/advs.202407405. Epub 2025 Jan 13.

本文引用的文献

1
Ciliary Motility: Regulation of Axonemal Dynein Motors.
Cold Spring Harb Perspect Biol. 2017 Aug 1;9(8):a018325. doi: 10.1101/cshperspect.a018325.
2
The Centrosome, a Multitalented Renaissance Organelle.
Cold Spring Harb Perspect Biol. 2016 Dec 1;8(12):a025049. doi: 10.1101/cshperspect.a025049.
4
Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism.
J Cell Biol. 2015 Jan 19;208(2):223-37. doi: 10.1083/jcb.201409036. Epub 2015 Jan 12.
5
Actin is required for IFT regulation in Chlamydomonas reinhardtii.
Curr Biol. 2014 Sep 8;24(17):2025-32. doi: 10.1016/j.cub.2014.07.038. Epub 2014 Aug 21.
6
Quantitative analysis and modeling of katanin function in flagellar length control.
Mol Biol Cell. 2014 Nov 5;25(22):3686-98. doi: 10.1091/mbc.E14-06-1116. Epub 2014 Aug 20.
7
The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment.
Nat Cell Biol. 2014 Jul;16(7):663-72. doi: 10.1038/ncb2988. Epub 2014 Jun 22.
8
Proteins of the ciliary axoneme are found on cytoplasmic membrane vesicles during growth of cilia.
Curr Biol. 2014 May 19;24(10):1114-20. doi: 10.1016/j.cub.2014.03.047. Epub 2014 May 8.
9
From the cytoplasm into the cilium: bon voyage.
Organogenesis. 2014 Jan 1;10(1):138-57. doi: 10.4161/org.29055. Epub 2014 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验