Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
Department of Chemical Engineering, Myongji University, Yongin 17058, South Korea.
Nature. 2017 Mar 1;543(7643):95-98. doi: 10.1038/nature21410.
Tooth enamel comprises parallel microscale and nanoscale ceramic columns or prisms interlaced with a soft protein matrix. This structural motif is unusually consistent across all species from all geological eras. Such invariability-especially when juxtaposed with the diversity of other tissues-suggests the existence of a functional basis. Here we performed ex vivo replication of enamel-inspired columnar nanocomposites by sequential growth of zinc oxide nanowire carpets followed by layer-by-layer deposition of a polymeric matrix around these. We show that the mechanical properties of these nanocomposites, including hardness, are comparable to those of enamel despite the nanocomposites having a smaller hard-phase content. Our abiotic enamels have viscoelastic figures of merit (VFOM) and weight-adjusted VFOM that are similar to, or higher than, those of natural tooth enamels-we achieve values that exceed the traditional materials limits of 0.6 and 0.8, respectively. VFOM values describe resistance to vibrational damage, and our columnar composites demonstrate that light-weight materials of unusually high resistance to structural damage from shocks, environmental vibrations and oscillatory stress can be made using biomimetic design. The previously inaccessible combinations of high stiffness, damping and light weight that we achieve in these layer-by-layer composites are attributed to efficient energy dissipation in the interfacial portion of the organic phase. The in vivo contribution of this interfacial portion to macroscale deformations along the tooth's normal is maximized when the architecture is columnar, suggesting an evolutionary advantage of the columnar motif in the enamel of living species. We expect our findings to apply to all columnar composites and to lead to the development of high-performance load-bearing materials.
牙釉质由平行的微观和纳米级陶瓷柱或棱柱与柔软的蛋白质基质交织而成。这种结构模式在所有地质时代的所有物种中都非常一致。这种不变性——尤其是与其他组织的多样性形成对比时——表明存在功能基础。在这里,我们通过顺序生长氧化锌纳米线地毯,然后在这些纳米线周围逐层沉积聚合物基质,来体外复制受牙釉质启发的柱状纳米复合材料。我们表明,这些纳米复合材料的机械性能,包括硬度,与牙釉质相当,尽管纳米复合材料的硬相含量较小。我们的非生物牙釉质具有粘弹性衡量标准(VFOM)和重量调整后的 VFOM,与天然牙釉质相似或更高——我们实现的数值分别超过了传统材料的 0.6 和 0.8 限制。VFOM 值描述了对振动损伤的抵抗力,我们的柱状复合材料表明,可以使用仿生设计来制造具有异常高的抗冲击、环境振动和振荡应力结构损伤的轻量级材料。我们在这些层层复合材料中实现的高刚度、阻尼和轻质的以前无法达到的组合归因于有机相界面部分的有效能量耗散。当结构为柱状时,界面部分对牙齿正常方向的宏观变形的贡献最大,这表明柱状图案在生物物种的牙釉质中具有进化优势。我们预计我们的发现将适用于所有柱状复合材料,并导致高性能承载材料的发展。