Suppr超能文献

由病原体响应的MPK3/MPK6级联和脱落酸的相互依赖功能调控气孔免疫

Regulation of Stomatal Immunity by Interdependent Functions of a Pathogen-Responsive MPK3/MPK6 Cascade and Abscisic Acid.

作者信息

Su Jianbin, Zhang Mengmeng, Zhang Lawrence, Sun Tiefeng, Liu Yidong, Lukowitz Wolfgang, Xu Juan, Zhang Shuqun

机构信息

Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211.

出版信息

Plant Cell. 2017 Mar;29(3):526-542. doi: 10.1105/tpc.16.00577. Epub 2017 Mar 2.

Abstract

Activation of mitogen-activated protein kinases (MAPKs) is one of the earliest responses after plants sense an invading pathogen. Here, we show that MPK3 and MPK6, two pathogen-responsive MAPKs, and their upstream MAPK kinases, MKK4 and MKK5, are essential to both stomatal and apoplastic immunity. Loss of function of and , or their upstream and , abolishes pathogen/microbe-associated molecular pattern- and pathogen-induced stomatal closure. Gain-of-function activation of MPK3/MPK6 induces stomatal closure independently of abscisic acid (ABA) biosynthesis and signaling. In contrast, exogenously applied organic acids such as malate or citrate are able to reverse the stomatal closure induced by MPK3/MPK6 activation. Gene expression analysis and in situ enzyme activity staining revealed that malate metabolism increases in guard cells after activation of MPK3/MPK6 or inoculation of pathogen. In addition, pathogen-induced malate metabolism requires functional MKK4/MKK5 and MPK3/MPK6. We propose that the pathogen-responsive MPK3/MPK6 cascade and ABA are two essential signaling pathways that control, respectively, the organic acid metabolism and ion channels, two main branches of osmotic regulation in guard cells that function interdependently to control stomatal opening/closure.

摘要

丝裂原活化蛋白激酶(MAPKs)的激活是植物感知入侵病原体后最早的反应之一。在此,我们表明,MPK3和MPK6这两种病原体响应性MAPKs及其上游MAPK激酶MKK4和MKK5对气孔免疫和质外体免疫均至关重要。MKK4和MKK5或其上游MKK4和MKK5功能丧失会消除病原体/微生物相关分子模式和病原体诱导的气孔关闭。MPK3/MPK6的功能获得性激活可独立于脱落酸(ABA)生物合成和信号传导诱导气孔关闭。相反,外源施加的苹果酸或柠檬酸等有机酸能够逆转MPK3/MPK6激活诱导的气孔关闭。基因表达分析和原位酶活性染色显示,MPK3/MPK6激活或接种病原体后,保卫细胞中的苹果酸代谢增加。此外,病原体诱导的苹果酸代谢需要功能性的MKK4/MKK5和MPK3/MPK6。我们提出,病原体响应性MPK3/MPK6级联和ABA是两条重要的信号通路,分别控制保卫细胞渗透调节的两个主要分支——有机酸代谢和离子通道,它们相互依赖地发挥作用以控制气孔的开闭。

相似文献

2
AIK1, A Mitogen-Activated Protein Kinase, Modulates Abscisic Acid Responses through the MKK5-MPK6 Kinase Cascade.
Plant Physiol. 2017 Feb;173(2):1391-1408. doi: 10.1104/pp.16.01386. Epub 2016 Dec 2.
5
Mitogen-Activated Protein Kinase Phosphatases Affect UV-B-Induced Stomatal Closure via Controlling NO in Guard Cells.
Plant Physiol. 2017 Jan;173(1):760-770. doi: 10.1104/pp.16.01656. Epub 2016 Nov 11.
7
Overlapping functions of YDA and MAPKKK3/MAPKKK5 upstream of MPK3/MPK6 in plant immunity and growth/development.
J Integr Plant Biol. 2022 Aug;64(8):1531-1542. doi: 10.1111/jipb.13309. Epub 2022 Jul 18.
8
Pathogen exploitation of an abscisic acid- and jasmonate-inducible MAPK phosphatase and its interception by immunity.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7456-7461. doi: 10.1073/pnas.1702613114. Epub 2017 Jun 26.
10
Abscisic acid signaling is involved in regulating the mitogen-activated protein kinase cascade module, AIK1-MKK5-MPK6.
Plant Signal Behav. 2017 May 4;12(5):e1321188. doi: 10.1080/15592324.2017.1321188. Epub 2017 May 11.

引用本文的文献

2
Regulation of Stomatal Responses to Pathogen and Drought Stress by the F-Box Protein AtSKIP5.
Mol Plant Pathol. 2025 Mar;26(3):e70074. doi: 10.1111/mpp.70074.
6
Comparisons of two receptor-MAPK pathways in a single cell-type reveal mechanisms of signalling specificity.
Nat Plants. 2024 Sep;10(9):1343-1362. doi: 10.1038/s41477-024-01768-y. Epub 2024 Sep 10.
9
Analysis of Guard Cell Readouts Using Isolated Epidermal Peels.
Bio Protoc. 2024 Jul 20;14(14):e5033. doi: 10.21769/BioProtoc.5033.
10
MAPK Cascades in Plant Microbiota Structure and Functioning.
J Microbiol. 2024 Mar;62(3):231-248. doi: 10.1007/s12275-024-00114-3. Epub 2024 Apr 8.

本文引用的文献

1
Starch Biosynthesis in Guard Cells But Not in Mesophyll Cells Is Involved in CO2-Induced Stomatal Closing.
Plant Physiol. 2016 Jun;171(2):788-98. doi: 10.1104/pp.15.01662. Epub 2016 Apr 21.
3
The Breakdown of Stored Triacylglycerols Is Required during Light-Induced Stomatal Opening.
Curr Biol. 2016 Mar 7;26(5):707-12. doi: 10.1016/j.cub.2016.01.019. Epub 2016 Feb 18.
4
Plant Physiology: Redefining the Enigma of Metabolism in Stomatal Movement.
Curr Biol. 2016 Feb 8;26(3):R107-9. doi: 10.1016/j.cub.2015.12.025.
5
Blue Light Induces a Distinct Starch Degradation Pathway in Guard Cells for Stomatal Opening.
Curr Biol. 2016 Feb 8;26(3):362-70. doi: 10.1016/j.cub.2015.12.036. Epub 2016 Jan 7.
6
Linking Metabolism to Membrane Signaling: The GABA-Malate Connection.
Trends Plant Sci. 2016 Apr;21(4):295-301. doi: 10.1016/j.tplants.2015.11.011. Epub 2015 Dec 23.
7
The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases.
Nucleic Acids Res. 2016 Jan 4;44(D1):D471-80. doi: 10.1093/nar/gkv1164. Epub 2015 Nov 2.
8
Multilayered Regulation of Ethylene Induction Plays a Positive Role in Arabidopsis Resistance against Pseudomonas syringae.
Plant Physiol. 2015 Sep;169(1):299-312. doi: 10.1104/pp.15.00659. Epub 2015 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验