Pasam Raj K, Bansal Urmil, Daetwyler Hans D, Forrest Kerrie L, Wong Debbie, Petkowski Joanna, Willey Nicholas, Randhawa Mandeep, Chhetri Mumta, Miah Hanif, Tibbits Josquin, Bariana Harbans, Hayden Matthew J
Department of Economic Development, Jobs, Transport and Recourses, AgriBio Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
Faculty of Agriculture and Environment, Plant Breeding Institute-Cobbitty, The University of Sydney, PMB4011, Narellan, NSW, 2567, Australia.
Theor Appl Genet. 2017 Apr;130(4):777-793. doi: 10.1007/s00122-016-2851-7. Epub 2017 Mar 2.
BayesR and MLM association mapping approaches in common wheat landraces were used to identify genomic regions conferring resistance to Yr, Lr, and Sr diseases. Deployment of rust resistant cultivars is the most economically effective and environmentally friendly strategy to control rust diseases in wheat. However, the highly evolving nature of wheat rust pathogens demands continued identification, characterization, and transfer of new resistance alleles into new varieties to achieve durable rust control. In this study, we undertook genome-wide association studies (GWAS) using a mixed linear model (MLM) and the Bayesian multilocus method (BayesR) to identify QTL contributing to leaf rust (Lr), stem rust (Sr), and stripe rust (Yr) resistance. Our study included 676 pre-Green Revolution common wheat landrace accessions collected in the 1920-1930s by A.E. Watkins. We show that both methods produce similar results, although BayesR had reduced background signals, enabling clearer definition of QTL positions. For the three rust diseases, we found 5 (Lr), 14 (Yr), and 11 (Sr) SNPs significant in both methods above stringent false-discovery rate thresholds. Validation of marker-trait associations with known rust QTL from the literature and additional genotypic and phenotypic characterisation of biparental populations showed that the landraces harbour both previously mapped and potentially new genes for resistance to rust diseases. Our results demonstrate that pre-Green Revolution landraces provide a rich source of genes to increase genetic diversity for rust resistance to facilitate the development of wheat varieties with more durable rust resistance.
在普通小麦地方品种中,采用贝叶斯R(BayesR)和多基因混合模型(MLM)关联作图方法来鉴定赋予抗叶锈病(Yr)、条锈病(Lr)和秆锈病(Sr)能力的基因组区域。推广种植抗锈品种是控制小麦锈病最经济有效且环保的策略。然而,小麦锈病病原体高度易变的特性要求持续鉴定、表征新的抗性等位基因,并将其导入新品种中,以实现持久的锈病防治。在本研究中,我们利用混合线性模型(MLM)和贝叶斯多位点方法(BayesR)进行全基因组关联研究(GWAS),以鉴定对叶锈病(Lr)、秆锈病(Sr)和条锈病(Yr)抗性有贡献的数量性状位点(QTL)。我们的研究包括了20世纪20 - 30年代由A.E.沃特金斯收集的676份绿色革命前的普通小麦地方品种种质。我们发现,尽管贝叶斯R(BayesR)的背景信号有所减少,能更清晰地界定QTL位置,但两种方法产生的结果相似。对于这三种锈病,我们在两种方法中均发现有5个(Lr)、14个(Yr)和11个(Sr)单核苷酸多态性(SNP)在严格的错误发现率阈值以上具有显著性。通过与文献中已知的锈病QTL进行标记 - 性状关联验证,以及对双亲群体进行额外的基因型和表型特征分析,结果表明这些地方品种既含有先前已定位的抗锈病基因,也可能含有新的抗锈病基因。我们的研究结果表明,绿色革命前的地方品种为增加抗锈病的遗传多样性提供了丰富的基因来源,有助于培育出具有更持久锈病抗性的小麦品种。