Suppr超能文献

人类学习的网络神经科学:为大脑与行为的定量理论提供信息的潜力。

A Network Neuroscience of Human Learning: Potential to Inform Quantitative Theories of Brain and Behavior.

作者信息

Bassett Danielle S, Mattar Marcelo G

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Trends Cogn Sci. 2017 Apr;21(4):250-264. doi: 10.1016/j.tics.2017.01.010. Epub 2017 Mar 2.

Abstract

Humans adapt their behavior to their external environment in a process often facilitated by learning. Efforts to describe learning empirically can be complemented by quantitative theories that map changes in neurophysiology to changes in behavior. In this review we highlight recent advances in network science that offer a sets of tools and a general perspective that may be particularly useful in understanding types of learning that are supported by distributed neural circuits. We describe recent applications of these tools to neuroimaging data that provide unique insights into adaptive neural processes, the attainment of knowledge, and the acquisition of new skills, forming a network neuroscience of human learning. While promising, the tools have yet to be linked to the well-formulated models of behavior that are commonly utilized in cognitive psychology. We argue that continued progress will require the explicit marriage of network approaches to neuroimaging data and quantitative models of behavior.

摘要

人类通过一个通常由学习促成的过程来使自己的行为适应外部环境。通过将神经生理学变化与行为变化进行映射的定量理论,可以补充对学习进行实证描述的努力。在本综述中,我们重点介绍网络科学的最新进展,这些进展提供了一套工具和一个总体视角,可能对理解由分布式神经回路支持的学习类型特别有用。我们描述了这些工具最近在神经成像数据中的应用,这些应用为适应性神经过程、知识的获取和新技能的习得提供了独特的见解,形成了人类学习的网络神经科学。虽然这些工具很有前景,但它们尚未与认知心理学中常用的精心制定的行为模型联系起来。我们认为,持续的进展将需要将网络方法与神经成像数据和行为定量模型明确结合起来。

相似文献

2
New approaches to neural circuits in behavior.行为的神经回路新方法。
Learn Mem. 2012 Aug 16;19(9):385-90. doi: 10.1101/lm.025049.111.
5
Brain Networks and Cognitive Architectures.脑网络与认知结构
Neuron. 2015 Oct 7;88(1):207-19. doi: 10.1016/j.neuron.2015.09.027.
6
Network neuroscience.网络神经科学
Nat Neurosci. 2017 Feb 23;20(3):353-364. doi: 10.1038/nn.4502.
7
Using focal cooling to link neural dynamics and behavior.利用焦点冷却将神经动力学与行为联系起来。
Neuron. 2021 Aug 18;109(16):2508-2518. doi: 10.1016/j.neuron.2021.05.029. Epub 2021 Jun 24.

引用本文的文献

4
Supercomplexity: bridging the gap between aesthetics and cognition.超级复杂性:弥合美学与认知之间的差距。
Front Neurosci. 2025 Jul 29;19:1552363. doi: 10.3389/fnins.2025.1552363. eCollection 2025.
9
From calcium imaging to graph topology.从钙成像到图拓扑结构。
Netw Neurosci. 2022 Oct 1;6(4):1125-1147. doi: 10.1162/netn_a_00262. eCollection 2022.

本文引用的文献

1
Evolution of brain network dynamics in neurodevelopment.神经发育过程中脑网络动力学的演变
Netw Neurosci. 2017 Feb 1;1(1):14-30. doi: 10.1162/NETN_a_00001. eCollection 2017.
2
Predicting future learning from baseline network architecture.从基线网络架构预测未来的学习。
Neuroimage. 2018 May 15;172:107-117. doi: 10.1016/j.neuroimage.2018.01.037. Epub 2018 Jan 28.
3
4
Network neuroscience.网络神经科学
Nat Neurosci. 2017 Feb 23;20(3):353-364. doi: 10.1038/nn.4502.
6
Multi-scale brain networks.多尺度脑网络。
Neuroimage. 2017 Oct 15;160:73-83. doi: 10.1016/j.neuroimage.2016.11.006. Epub 2016 Nov 11.
9
Functional Network Dynamics of the Language System.语言系统的功能网络动力学
Cereb Cortex. 2016 Oct 17;26(11):4148-4159. doi: 10.1093/cercor/bhw238.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验