Suppr超能文献

从次优临床实例中得出最佳药物剂量:一种深度强化学习方法。

Optimal medication dosing from suboptimal clinical examples: a deep reinforcement learning approach.

作者信息

Nemati Shamim, Ghassemi Mohammad M, Clifford Gari D

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2978-2981. doi: 10.1109/EMBC.2016.7591355.

Abstract

Misdosing medications with sensitive therapeutic windows, such as heparin, can place patients at unnecessary risk, increase length of hospital stay, and lead to wasted hospital resources. In this work, we present a clinician-in-the-loop sequential decision making framework, which provides an individualized dosing policy adapted to each patient's evolving clinical phenotype. We employed retrospective data from the publicly available MIMIC II intensive care unit database, and developed a deep reinforcement learning algorithm that learns an optimal heparin dosing policy from sample dosing trails and their associated outcomes in large electronic medical records. Using separate training and testing datasets, our model was observed to be effective in proposing heparin doses that resulted in better expected outcomes than the clinical guidelines. Our results demonstrate that a sequential modeling approach, learned from retrospective data, could potentially be used at the bedside to derive individualized patient dosing policies.

摘要

给具有敏感治疗窗的药物(如肝素)用药剂量错误,可能会使患者面临不必要的风险,延长住院时间,并导致医院资源浪费。在这项工作中,我们提出了一种临床医生参与的序贯决策框架,该框架提供了一种适应每个患者不断变化的临床表型的个性化给药策略。我们使用了公开可用的MIMIC II重症监护病房数据库中的回顾性数据,并开发了一种深度强化学习算法,该算法从大型电子病历中的样本给药试验及其相关结果中学习最优的肝素给药策略。使用单独的训练和测试数据集,我们观察到我们的模型在提出肝素剂量方面是有效的,这些剂量产生的预期结果比临床指南更好。我们的结果表明,从回顾性数据中学习的序贯建模方法可能潜在地用于床边推导个性化的患者给药策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验