Suppr超能文献

重要性采样对噪声环境下音频咳嗽事件稳健分割的影响。

Effect of importance sampling on robust segmentation of audio-cough events in noisy environments.

作者信息

Monge-Alvarez Jesus, Hoyos-Barcelo Carlos, Lesso Paul, Escudero Javier, Dahal Keshav, Casaseca-de-la-Higuera Pablo

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3740-3744. doi: 10.1109/EMBC.2016.7591541.

Abstract

This paper proposes a new cough detection system based on audio signals acquired from conventional smartphones. The system relies on local Hu moments to characterize cough events and a Λ-NN classifier to distinguish cough events from non-cough ones (speech, laugh, sneeze, etc.) and noisy sounds. To deal with the unbalance between classes, we employ Distinct-Borderline2 Synthetic Minority Oversampling Technique and a bespoke cost matrix. The system additionally features a post-processing module to avoid isolated false negatives and, this way, increases sensitivity. Evaluation has been carried out using a database comprising a variety of cough and non-cough events and different types of background noise. In this study, we specifically focused on noise likely to appear when the user is carrying the smartphone in daily activities. Different Signal to Noise Ratio values were tested ranging between -15 and 0 dB. Our experiments confirm that local Hu moments are suitable not only for characterizing cough events but also for coping with noisy environments. Results show a sensitivity of 94.17% and a specificity of 92.16% at -15 dB. Thus, our system shows potential as a reliable and place-ubiquitous monitoring device that helps patients self-manage their own respiratory diseases and avoids unreported or fabricated symptoms.

摘要

本文提出了一种基于从传统智能手机采集的音频信号的新型咳嗽检测系统。该系统依靠局部Hu矩来表征咳嗽事件,并使用Λ-NN分类器来区分咳嗽事件与非咳嗽事件(语音、笑声、喷嚏等)以及噪声。为了处理类间不平衡问题,我们采用了边界清晰2合成少数类过采样技术和定制的代价矩阵。该系统还具有一个后处理模块,以避免孤立的假阴性,从而提高灵敏度。我们使用一个包含各种咳嗽和非咳嗽事件以及不同类型背景噪声的数据库进行了评估。在本研究中,我们特别关注用户在日常活动中携带智能手机时可能出现的噪声。测试了-15至0 dB之间的不同信噪比。我们的实验证实,局部Hu矩不仅适用于表征咳嗽事件,也适用于应对嘈杂环境。结果表明,在-15 dB时,灵敏度为94.17%,特异性为92.16%。因此,我们的系统显示出作为一种可靠且无处不在的监测设备的潜力,有助于患者自我管理自身的呼吸系统疾病,并避免未报告或伪造的症状。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验