Suppr超能文献

纳米粒子功能化小芯悬浮芯光纤——一种高效传感的新型平台。

Nanoparticle functionalised small-core suspended-core fibre - a novel platform for efficient sensing.

作者信息

Doherty Brenda, Csáki Andrea, Thiele Matthias, Zeisberger Matthias, Schwuchow Anka, Kobelke Jens, Fritzsche Wolfgang, Schmidt Markus A

机构信息

Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Str. 9, 07745 Jena, Germany; Abbe Center of Photonics, Friedrich-Schiller-University, Max-Wien-Platz, 1, 07743 Jena, Germany.

Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Str. 9, 07745 Jena, Germany.

出版信息

Biomed Opt Express. 2017 Jan 11;8(2):790-799. doi: 10.1364/BOE.8.000790. eCollection 2017 Feb 1.

Abstract

Detecting small quantities of specific target molecules is of major importance within bioanalytics for efficient disease diagnostics. One promising sensing approach relies on combining plasmonically-active waveguides with microfluidics yielding an easy-to-use sensing platform. Here we introduce suspended-core fibres containing immobilised plasmonic nanoparticles surrounding the guiding core as a concept for an entirely integrated optofluidic platform for efficient refractive index sensing. Due to the extremely small optical core and the large adjacent microfluidic channels, over two orders of magnitude of nanoparticle coverage densities have been accessed with millimetre-long sample lengths showing refractive index sensitivities of 170 nm/RIU for aqueous analytes where the fibre interior is functionalised by gold nanospheres. Our concept represents a fully integrated optofluidic sensing system demanding small sample volumes and allowing for real-time analyte monitoring, both of which are highly relevant within invasive bioanalytics, particularly within molecular disease diagnostics and environmental science.

摘要

在生物分析中,检测少量特定目标分子对于高效疾病诊断至关重要。一种很有前景的传感方法是将等离子体活性波导与微流体相结合,从而产生一个易于使用的传感平台。在此,我们引入一种悬浮芯光纤,其在引导芯周围含有固定的等离子体纳米颗粒,作为一种用于高效折射率传感的完全集成光流体平台的概念。由于光学芯极小且相邻微流体通道较大,对于毫米长的样品长度,已实现了超过两个数量级的纳米颗粒覆盖密度,对于内部用金纳米球功能化的水性分析物,其折射率灵敏度为170 nm/RIU。我们的概念代表了一种完全集成的光流体传感系统,所需样品体积小且允许实时分析物监测,这两者在侵入性生物分析中都高度相关,特别是在分子疾病诊断和环境科学领域。

相似文献

1
Nanoparticle functionalised small-core suspended-core fibre - a novel platform for efficient sensing.
Biomed Opt Express. 2017 Jan 11;8(2):790-799. doi: 10.1364/BOE.8.000790. eCollection 2017 Feb 1.
3
Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers.
Small. 2010 Nov 22;6(22):2584-9. doi: 10.1002/smll.201001071.
4
Chemical-assisted femtosecond laser writing of lab-in-fibers.
Lab Chip. 2014 Oct 7;14(19):3817-29. doi: 10.1039/c4lc00648h.
5
Multispectral sensing of biological liquids with hollow-core microstructured optical fibres.
Light Sci Appl. 2020 Oct 10;9:173. doi: 10.1038/s41377-020-00410-8. eCollection 2020.
6
The Optofluidic Light Cage - On-Chip Integrated Spectroscopy Using an Antiresonance Hollow Core Waveguide.
Anal Chem. 2021 Jan 19;93(2):752-760. doi: 10.1021/acs.analchem.0c02857. Epub 2020 Dec 9.
8
Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing.
Sensors (Basel). 2015 Sep 29;15(10):25090-102. doi: 10.3390/s151025090.
10

引用本文的文献

1
Thermo-optics of gilded hollow-core fibers.
Nanoscale. 2024 Jul 25;16(29):13945-13952. doi: 10.1039/d3nr05310e.
3
3D-Nanoprinted Antiresonant Hollow-Core Microgap Waveguide: An on-Chip Platform for Integrated Photonic Devices and Sensors.
ACS Photonics. 2022 Sep 21;9(9):3012-3024. doi: 10.1021/acsphotonics.2c00725. Epub 2022 Sep 2.
4
Preparation and Application of Metal Nanoparticals Elaborated Fiber Sensors.
Sensors (Basel). 2020 Sep 10;20(18):5155. doi: 10.3390/s20185155.
5
Functionalized Microstructured Optical Fibers: Materials, Methods, Applications.
Materials (Basel). 2020 Feb 19;13(4):921. doi: 10.3390/ma13040921.
6
Suspended-Core Microstructured Polymer Optical Fibers and Potential Applications in Sensing.
Sensors (Basel). 2019 Aug 7;19(16):3449. doi: 10.3390/s19163449.
7
Micro and Nanostructured Materials for the Development of Optical Fibre Sensors.
Sensors (Basel). 2017 Oct 11;17(10):2312. doi: 10.3390/s17102312.

本文引用的文献

1
Third harmonic generation in exposed-core microstructured optical fibers.
Opt Express. 2016 Aug 8;24(16):17860-7. doi: 10.1364/OE.24.017860.
3
Optical Biosensors for the Detection of Pathogenic Microorganisms.
Trends Biotechnol. 2016 Jan;34(1):7-25. doi: 10.1016/j.tibtech.2015.09.012. Epub 2015 Oct 22.
4
Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber.
ACS Nano. 2015 Dec 22;9(12):12349-57. doi: 10.1021/acsnano.5b05646. Epub 2015 Nov 3.
5
Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment.
Adv Mater. 2014 Nov 26;26(44):7462-7. doi: 10.1002/adma.201402085. Epub 2014 Aug 28.
7
Photonic crystal fibres for chemical sensing and photochemistry.
Chem Soc Rev. 2013 Nov 21;42(22):8629-48. doi: 10.1039/c3cs60128e.
8
A silver nanoparticle-modified evanescent field optical fiber sensor for methylene blue detection.
Sensors (Basel). 2013 Mar 21;13(3):3986-97. doi: 10.3390/s130303986.
9
Tapered optical fiber sensor based on localized surface plasmon resonance.
Opt Express. 2012 Sep 10;20(19):21693-701. doi: 10.1364/OE.20.021693.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验