Suppr超能文献

计算机视觉和机器学习在全基因组研究中的稳健表型分析。

Computer vision and machine learning for robust phenotyping in genome-wide studies.

机构信息

Department of Agronomy, Iowa State University, Ames, IA, USA.

Department of Mechanical Engineering, Iowa State University, Ames, IA, USA.

出版信息

Sci Rep. 2017 Mar 8;7:44048. doi: 10.1038/srep44048.

Abstract

Traditional evaluation of crop biotic and abiotic stresses are time-consuming and labor-intensive limiting the ability to dissect the genetic basis of quantitative traits. A machine learning (ML)-enabled image-phenotyping pipeline for the genetic studies of abiotic stress iron deficiency chlorosis (IDC) of soybean is reported. IDC classification and severity for an association panel of 461 diverse plant-introduction accessions was evaluated using an end-to-end phenotyping workflow. The workflow consisted of a multi-stage procedure including: (1) optimized protocols for consistent image capture across plant canopies, (2) canopy identification and registration from cluttered backgrounds, (3) extraction of domain expert informed features from the processed images to accurately represent IDC expression, and (4) supervised ML-based classifiers that linked the automatically extracted features with expert-rating equivalent IDC scores. ML-generated phenotypic data were subsequently utilized for the genome-wide association study and genomic prediction. The results illustrate the reliability and advantage of ML-enabled image-phenotyping pipeline by identifying previously reported locus and a novel locus harboring a gene homolog involved in iron acquisition. This study demonstrates a promising path for integrating the phenotyping pipeline into genomic prediction, and provides a systematic framework enabling robust and quicker phenotyping through ground-based systems.

摘要

传统的作物生物和非生物胁迫评估既费时又费力,限制了对数量性状遗传基础的剖析能力。本文报道了一种基于机器学习(ML)的大豆非生物胁迫缺铁黄化症(IDC)遗传研究的图像表型分析管道。使用端到端表型工作流程评估了 461 个不同植物引种品系的关联面板的 IDC 分类和严重程度。该工作流程包括一个多阶段的程序,包括:(1)在整个植物冠层上进行一致图像捕获的优化方案;(2)从杂乱背景中识别和注册树冠;(3)从处理后的图像中提取领域专家提供的特征,以准确表示 IDC 表达;(4)基于监督机器学习的分类器,将自动提取的特征与专家评分等效的 IDC 分数联系起来。随后,使用 ML 生成的表型数据进行全基因组关联研究和基因组预测。研究结果通过鉴定先前报道的基因座和一个新的基因座,该基因座含有一个参与铁吸收的基因同源物,说明了基于 ML 的图像表型分析管道的可靠性和优势。本研究为将表型分析管道整合到基因组预测中提供了一个有前途的途径,并提供了一个系统的框架,通过地面系统实现稳健和更快的表型分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff13/5358742/c041dd5ce281/srep44048-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验