Suppr超能文献

用于同时预测纳米金属氧化物多种毒性终点的多靶点定量构效关系建模

Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides.

作者信息

Basant Nikita, Gupta Shikha

机构信息

a Environmental and Technical Research Centre , Lucknow , India.

b Plant Ecology and Environmental Science Division, CSIR-Natioanl Botanical Research Institute , Lucknow , India.

出版信息

Nanotoxicology. 2017 Apr;11(3):339-350. doi: 10.1080/17435390.2017.1302612. Epub 2017 Mar 22.

Abstract

The metal oxide nanoparticles (MeONPs) due to their unique physico-chemical properties have widely been used in different products. Current studies have established toxicity of some NPs to human and environment, hence, imply for their comprehensive safety assessment. Here, the potential of using a multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of various MeONPs has been investigated. A multi-target QSTR model has been established using four different experimental toxicity data sets of MeONPs. Diversity of the considered experimental toxicity data sets was tested using the Kruskal-Wallis (K-W) statistics. The optimal validated model yielded high correlations (R between 0.828 and 0.956) between the experimental and simultaneously predicted endpoint toxicity values in test arrays for all the four systems. The structural features (oxygen percent, LogS, and Mulliken's electronegativity) identified by the QSTR model were mechanistically interpretable in view of the accepted toxicity mechanisms for NPs. Single target QSTR models were also established (R >0.882) for individual toxicity endpoint prediction of MeONPs. The performance of the multi-target QSTR model was closely comparable with individual models and with those reported earlier in the literature for toxicity prediction of NPs. The model reliably predicts the toxicity of all considered MeONPs, and the methodology is expected to provide guidance for the future design of safe NP-based products. The proposed multi-target QSTR can be successfully used for screening new, untested metal oxide NPs for their safety assessment within the defined applicability domain of the model.

摘要

金属氧化物纳米颗粒(MeONPs)因其独特的物理化学性质而被广泛应用于不同产品中。目前的研究已证实某些纳米颗粒对人类和环境具有毒性,因此意味着需要对其进行全面的安全性评估。在此,研究了使用多靶点定量构效关系(QSTR)模型同时预测各种MeONPs多种毒性终点的潜力。利用MeONPs的四个不同实验毒性数据集建立了多靶点QSTR模型。使用Kruskal-Wallis(K-W)统计检验所考虑的实验毒性数据集的多样性。经过优化验证的模型在所有四个系统的测试阵列中,实验和同时预测的终点毒性值之间产生了高度相关性(R在0.828至0.956之间)。鉴于纳米颗粒公认的毒性机制,QSTR模型识别出的结构特征(氧百分比、LogS和穆利肯电负性)在机制上是可解释的。还建立了单靶点QSTR模型(R>0.882)用于预测MeONPs的个体毒性终点。多靶点QSTR模型的性能与个体模型以及文献中先前报道的用于纳米颗粒毒性预测的模型密切可比。该模型可靠地预测了所有考虑的MeONPs的毒性,并且该方法有望为未来基于纳米颗粒的安全产品设计提供指导。所提出的多靶点QSTR可成功用于在模型定义的适用范围内筛选新的、未经测试的金属氧化物纳米颗粒进行安全性评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验