Suppr超能文献

基于数据驱动的模型预测刚果民主共和国前埃夸尔省昏睡病的消除。

Data-driven models to predict the elimination of sleeping sickness in former Equateur province of DRC.

机构信息

Zeeman Institute: SBIDER (Systems Biology & Infectious Disease Epidemiology Research), University of Warwick, Coventry, CV4 7AL, UK; School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.

Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, 06510, USA.

出版信息

Epidemics. 2017 Mar;18:101-112. doi: 10.1016/j.epidem.2017.01.006.

Abstract

Approaching disease elimination, it is crucial to be able to assess progress towards key objectives using quantitative tools. For Gambian human African trypanosomiasis (HAT), the ultimate goal is to stop transmission by 2030, while intermediary targets include elimination as a public health problem - defined as <1 new case per 10,000 inhabitants in 90% of foci, and <2000 reported cases by 2020. Using two independent mathematical models, this study assessed the achievability of these goals in the former Equateur province of the Democratic Republic of Congo, which historically had endemic levels of disease. The two deterministic models used different assumptions on disease progression, risk of infection and non-participation in screening, reflecting biological uncertainty. To validate the models a censor-fit-uncensor procedure was used to fit to health-zone level data from 2000 to 2012; initially the last six years were censored, then three and the final step utilised all data. The different model projections were used to evaluate the expected transmission and reporting for each health zone within each province under six intervention strategies using currently available tools. In 2012 there were 197 reported HAT cases in former Equateur reduced from 6828 in 2000, however this reflects lower active testing for HAT (1.3% of the population compared to 7.2%). Modelling results indicate that there are likely to be <300 reported cases in former Equateur in 2020 if screening continues at the mean level for 2000-2012 (6.2%), and <120 cases if vector control is introduced. Some health zones may fail to achieve <1 new case per 10,000 by 2020 without vector control, although most appear on track for this target using medical interventions alone. The full elimination goal will be harder to reach; between 39 and 54% of health zones analysed may have to improve their current medical-only strategy to stop transmission completely by 2030.

摘要

在接近消除疾病的过程中,使用定量工具评估实现关键目标的进展至关重要。对于冈比亚人体非洲锥虫病(HAT),最终目标是在 2030 年停止传播,而中间目标包括消除作为公共卫生问题——定义为 90%的流行地区每 10000 名居民中出现<1 例新病例,以及到 2020 年报告病例数<2000 例。本研究使用两个独立的数学模型,评估了刚果民主共和国前埃夸多尔省实现这些目标的可能性,该省历史上一直存在疾病流行。这两个确定性模型对疾病进展、感染风险和筛查参与率的假设不同,反映了生物学的不确定性。为了验证模型,采用了一种屏蔽拟合-解蔽程序,对 2000 年至 2012 年的卫生区数据进行拟合;最初屏蔽了最后六年的数据,然后是三年,最后一步使用了所有数据。使用不同的模型预测,评估了在六个干预策略下,每个省的每个卫生区的预期传播和报告情况,这些策略是使用当前可用工具制定的。2012 年,前埃夸多尔省报告了 197 例 HAT 病例,从 2000 年的 6828 例减少,但这反映了 HAT 的主动检测率较低(占人口的 1.3%,而不是 7.2%)。建模结果表明,如果按照 2000-2012 年的平均水平继续进行筛查(6.2%),那么 2020 年前埃夸多尔省的报告病例数可能会少于 300 例,如果引入病媒控制,病例数可能会少于 120 例。如果没有病媒控制,一些卫生区可能无法在 2020 年前达到每 10000 人<1 例新病例的目标,但大多数卫生区似乎仅通过医疗干预就能达到这一目标。完全消除疾病的目标将更难实现;分析的 39%至 54%的卫生区可能需要改进其当前仅靠医疗手段的策略,以便在 2030 年前完全停止传播。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验