Suppr超能文献

一个由同源群全集组成的、包含六倍体甘薯(Ipomoea batatas)的高密度 SNP 遗传图谱。

A high-density SNP genetic map consisting of a complete set of homologous groups in autohexaploid sweetpotato (Ipomoea batatas).

机构信息

Kazusa DNA Research Institute, Japan.

Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Japan.

出版信息

Sci Rep. 2017 Mar 10;7:44207. doi: 10.1038/srep44207.

Abstract

Sweetpotato (Ipomoea batatas) is an autohexaploid species with 90 chromosomes (2n = 6x = 90) and a basic chromosome number of 15, and is therefore regarded as one of the most challenging species for high-density genetic map construction. Here, we used single nucleotide polymorphisms (SNPs) identified by double-digest restriction site-associated DNA sequencing based on next-generation sequencing technology to construct a map for sweetpotato. We then aligned the sequence reads onto the reference genome sequence of I. trifida, a likely diploid ancestor of sweetpotato, to detect SNPs. In addition, to simplify analysis of the complex genetic mode of autohexaploidy, we used an S1 mapping population derived from self-pollination of a single parent. As a result, 28,087 double-simplex SNPs showing a Mendelian segregation ratio in the S1 progeny could be mapped onto 96 linkage groups (LGs), covering a total distance of 33,020.4 cM. Based on the positions of the SNPs on the I. trifida genome, the LGs were classified into 15 groups, each with roughly six LGs and six small extra groups. The molecular genetic techniques used in this study are applicable to high-density mapping of other polyploid plant species, including important crops.

摘要

甘薯(Ipomoea batatas)是一个具有 90 条染色体(2n = 6x = 90)的同源六倍体物种,其基本染色体数为 15,因此被认为是构建高密度遗传图谱最具挑战性的物种之一。在这里,我们使用基于下一代测序技术的双酶切限制位点相关 DNA 测序鉴定的单核苷酸多态性(SNPs)来构建甘薯图谱。然后,我们将序列读取比对到甘薯的可能二倍体祖先 I. trifida 的参考基因组序列上,以检测 SNPs。此外,为了简化同源六倍体复杂遗传模式的分析,我们使用了源自单一亲本自交的 S1 作图群体。结果,28087 个在 S1 后代中表现出孟德尔分离比例的双单倍体 SNPs 可以映射到 96 个连锁群(LG)上,总距离为 33020.4 cM。基于 SNPs 在 I. trifida 基因组上的位置,LG 被分为 15 个组,每组大约有六个 LG 和六个小的额外组。本研究中使用的分子遗传技术适用于包括重要作物在内的其他多倍体植物物种的高密度图谱构建。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be6d/5345071/6b1ca3fcb31d/srep44207-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验