Suppr超能文献

非妊娠猪子宫平滑肌中肌电信号传播的生物数学模式。

Biomathematical pattern of EMG signal propagation in smooth muscle of the non-pregnant porcine uterus.

作者信息

Domino Malgorzata, Pawlinski Bartosz, Gajewski Zdzislaw

机构信息

Department of Large Animal Diseases with Clinic, Veterinary Research Centre and Center for Biomedical Research, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (WULS - SGGW), Warsaw, Poland.

出版信息

PLoS One. 2017 Mar 10;12(3):e0173452. doi: 10.1371/journal.pone.0173452. eCollection 2017.

Abstract

Uterine contractions are generated by myometrial smooth muscle cells (SMCs) that comprise most of the myometrial layer of the uterine wall. Aberrant uterine motility (i.e., hypo- or hyper-contractility or asynchronous contractions) has been implicated in the pathogenesis of infertility due to the failure of implantation, endometriosis and abnormal estrous cycles. The mechanism whereby the non-pregnant uterus initiates spontaneous contractions remains poorly understood. The aim of the present study was to employ linear synchronization measures for analyzing the pattern of EMG signal propagation (direction and speed) in smooth muscles of the non-pregnant porcine uterus in vivo using telemetry recording system. It has been revealed that the EMG signal conduction in the uterine wall of the non-pregnant sow does not occur at random but it rather exhibits specific directions and speed. All detectable EMG signals moved along the uterine horn in both cervico-tubal and tubo-cervical directions. The signal migration speed could be divided into the three main types or categories: i. slow basic migration rhythm (SBMR); ii. rapid basic migration rhythm (RBMR); and iii. rapid accessory migration rhythm (RAMR). In conclusion, the EMG signal propagation in smooth muscles of the porcine uterus in vivo can be assessed using a linear synchronization model. Physiological pattern of the uterine contractile activity determined in this study provides a basis for future investigations of normal and pathologicall myogenic function of the uterus.

摘要

子宫收缩由子宫肌层平滑肌细胞(SMC)产生,这些细胞构成子宫壁肌层的大部分。异常子宫运动(即收缩不足或过度或异步收缩)因着床失败、子宫内膜异位症和异常发情周期而与不孕症的发病机制有关。非妊娠子宫引发自发收缩的机制仍知之甚少。本研究的目的是采用线性同步测量方法,使用遥测记录系统分析体内非妊娠猪子宫平滑肌中肌电信号传播的模式(方向和速度)。研究发现,非妊娠母猪子宫壁中的肌电信号传导并非随机发生,而是呈现出特定的方向和速度。所有可检测到的肌电信号都沿子宫角在宫颈-输卵管和输卵管-宫颈两个方向移动。信号迁移速度可分为三种主要类型或类别:i. 缓慢基本迁移节律(SBMR);ii. 快速基本迁移节律(RBMR);iii. 快速辅助迁移节律(RAMR)。总之,可使用线性同步模型评估体内猪子宫平滑肌中的肌电信号传播。本研究确定的子宫收缩活动的生理模式为未来子宫正常和病理性肌源性功能的研究提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cff8/5345803/381e916b095c/pone.0173452.g001.jpg

相似文献

1
Biomathematical pattern of EMG signal propagation in smooth muscle of the non-pregnant porcine uterus.
PLoS One. 2017 Mar 10;12(3):e0173452. doi: 10.1371/journal.pone.0173452. eCollection 2017.
2
Uterine EMG activity in the non-pregnant sow during estrous cycle.
BMC Vet Res. 2018 Jun 5;14(1):176. doi: 10.1186/s12917-018-1495-z.
3
The linear synchronization measures of uterine EMG signals: Evidence of synchronized action potentials during propagation.
Theriogenology. 2016 Nov;86(8):1873-8. doi: 10.1016/j.theriogenology.2016.03.036. Epub 2016 Apr 1.
5
Propagation of electrical activity in uterine muscle during pregnancy: a review.
Acta Physiol (Oxf). 2015 Feb;213(2):406-16. doi: 10.1111/apha.12424. Epub 2014 Dec 5.
7
Uterine region-dependent differences in responsiveness to prostaglandins in the non-pregnant porcine myometrium.
Prostaglandins Other Lipid Mediat. 2005 Jan;75(1-4):105-22. doi: 10.1016/j.prostaglandins.2004.11.002.
9
Integration of endocrine and mechanical signals in the regulation of myometrial functions during pregnancy and labour.
Eur J Obstet Gynecol Reprod Biol. 2009 May;144 Suppl 1:S2-10. doi: 10.1016/j.ejogrb.2009.02.044. Epub 2009 Mar 18.

引用本文的文献

2
Effects of opioids and benzodiazepines on bladder function of awake restrained mice.
Am J Clin Exp Urol. 2021 Dec 15;9(6):456-468. eCollection 2021.
3
Analysis of uterine peristalsis in the non-pregnant female mouse.
Interface Focus. 2019 Aug 6;9(4):20180082. doi: 10.1098/rsfs.2018.0082. Epub 2019 Jun 14.
4
Anti-Nogo-A Antibodies As a Potential Causal Therapy for Lower Urinary Tract Dysfunction after Spinal Cord Injury.
J Neurosci. 2019 May 22;39(21):4066-4076. doi: 10.1523/JNEUROSCI.3155-18.2019. Epub 2019 Mar 22.
5
Uterine EMG activity in the non-pregnant sow during estrous cycle.
BMC Vet Res. 2018 Jun 5;14(1):176. doi: 10.1186/s12917-018-1495-z.

本文引用的文献

1
The linear synchronization measures of uterine EMG signals: Evidence of synchronized action potentials during propagation.
Theriogenology. 2016 Nov;86(8):1873-8. doi: 10.1016/j.theriogenology.2016.03.036. Epub 2016 Apr 1.
2
Simulating uterine contraction by using an electro-chemo-mechanical model.
Biomech Model Mechanobiol. 2016 Jun;15(3):497-510. doi: 10.1007/s10237-015-0703-z. Epub 2015 Jul 11.
3
Uterine Contractility in the Nonpregnant Mouse: Changes During the Estrous Cycle and Effects of Chloride Channel Blockade.
Biol Reprod. 2015 Jun;92(6):141. doi: 10.1095/biolreprod.115.129809. Epub 2015 Apr 29.
4
Propagation of electrical activity in uterine muscle during pregnancy: a review.
Acta Physiol (Oxf). 2015 Feb;213(2):406-16. doi: 10.1111/apha.12424. Epub 2014 Dec 5.
6
Linking myometrial physiology to intrauterine pressure; how tissue-level contractions create uterine contractions of labor.
PLoS Comput Biol. 2014 Oct 16;10(10):e1003850. doi: 10.1371/journal.pcbi.1003850. eCollection 2014 Oct.
7
Velocity and directionality of the electrohysterographic signal propagation.
PLoS One. 2014 Jan 21;9(1):e86775. doi: 10.1371/journal.pone.0086775. eCollection 2014.
8
Electrohysterography of labor contractions: propagation velocity and direction.
Acta Obstet Gynecol Scand. 2013 Sep;92(9):1070-8. doi: 10.1111/aogs.12190. Epub 2013 Jul 18.
9
Better pregnancy monitoring using nonlinear correlation analysis of external uterine electromyography.
IEEE Trans Biomed Eng. 2013 Apr;60(4):1160-6. doi: 10.1109/TBME.2012.2229279. Epub 2012 Nov 21.
10
A modified Hai-Murphy model of uterine smooth muscle contraction.
Bull Math Biol. 2012 Jan;74(1):143-58. doi: 10.1007/s11538-011-9681-1. Epub 2011 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验