Suppr超能文献

仿射子空间的代数聚类。

Algebraic Clustering of Affine Subspaces.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2018 Feb;40(2):482-489. doi: 10.1109/TPAMI.2017.2678477. Epub 2017 Mar 6.

Abstract

Subspace clustering is an important problem in machine learning with many applications in computer vision and pattern recognition. Prior work has studied this problem using algebraic, iterative, statistical, low-rank and sparse representation techniques. While these methods have been applied to both linear and affine subspaces, theoretical results have only been established in the case of linear subspaces. For example, algebraic subspace clustering (ASC) is guaranteed to provide the correct clustering when the data points are in general position and the union of subspaces is transversal. In this paper we study in a rigorous fashion the properties of ASC in the case of affine subspaces. Using notions from algebraic geometry, we prove that the homogenization trick , which embeds points in a union of affine subspaces into points in a union of linear subspaces, preserves the general position of the points and the transversality of the union of subspaces in the embedded space, thus establishing the correctness of ASC for affine subspaces.

摘要

子空间聚类是机器学习中的一个重要问题,在计算机视觉和模式识别中有许多应用。先前的工作已经使用代数、迭代、统计、低秩和稀疏表示技术来研究这个问题。虽然这些方法已经应用于线性和仿射子空间,但理论结果仅在线性子空间的情况下得到了证实。例如,当数据点处于一般位置且子空间的并集是横向时,代数子空间聚类(ASC)保证提供正确的聚类。在本文中,我们以严格的方式研究了仿射子空间中 ASC 的性质。使用代数几何中的概念,我们证明了将嵌入在仿射子空间并集中的点嵌入到线性子空间并集中的齐次化技巧保持了点的一般位置和嵌入空间中子空间并集的横向性,从而为仿射子空间的 ASC 建立了正确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验