Suppr超能文献

基于惯性测量单元步态测量的帕金森病识别度量学习

Metric learning for Parkinsonian identification from IMU gait measurements.

作者信息

Cuzzolin Fabio, Sapienza Michael, Esser Patrick, Saha Suman, Franssen Miss Marloes, Collett Johnny, Dawes Helen

机构信息

Artificial Intelligence and Vision Group, Department of Computing and Communication Technologies, Oxford Brookes University, Wheatley Campus, Oxford OX33 1HX, UK.

Torr Vision Group, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.

出版信息

Gait Posture. 2017 May;54:127-132. doi: 10.1016/j.gaitpost.2017.02.012. Epub 2017 Feb 27.

Abstract

Diagnosis of people with mild Parkinson's symptoms is difficult. Nevertheless, variations in gait pattern can be utilised to this purpose, when measured via Inertial Measurement Units (IMUs). Human gait, however, possesses a high degree of variability across individuals, and is subject to numerous nuisance factors. Therefore, off-the-shelf Machine Learning techniques may fail to classify it with the accuracy required in clinical trials. In this paper we propose a novel framework in which IMU gait measurement sequences sampled during a 10m walk are first encoded as hidden Markov models (HMMs) to extract their dynamics and provide a fixed-length representation. Given sufficient training samples, the distance between HMMs which optimises classification performance is learned and employed in a classical Nearest Neighbour classifier. Our tests demonstrate how this technique achieves accuracy of 85.51% over a 156 people with Parkinson's with a representative range of severity and 424 typically developed adults, which is the top performance achieved so far over a cohort of such size, based on single measurement outcomes. The method displays the potential for further improvement and a wider application to distinguish other conditions.

摘要

对轻度帕金森症状患者进行诊断颇具难度。然而,当通过惯性测量单元(IMU)进行测量时,步态模式的变化可用于此目的。然而,人类步态在个体之间具有高度变异性,并且受到众多干扰因素的影响。因此,现成的机器学习技术可能无法按照临床试验所需的精度对其进行分类。在本文中,我们提出了一种新颖的框架,其中在10米步行过程中采样的IMU步态测量序列首先被编码为隐马尔可夫模型(HMM),以提取其动态特征并提供固定长度的表示。在有足够训练样本的情况下,学习优化分类性能的HMM之间的距离,并将其应用于经典的最近邻分类器中。我们的测试表明,该技术在156名具有代表性严重程度范围的帕金森患者和424名典型发育成年人中实现了85.51%的准确率,基于单次测量结果,这是迄今为止在如此规模的队列中取得的最佳性能。该方法显示出进一步改进的潜力以及在区分其他病症方面更广泛应用的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验