Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
Soft Matter. 2017 Mar 29;13(13):2475-2482. doi: 10.1039/c7sm00230k.
An entropic depletion-driven phase separation is known to be observed for mixtures of polymers and nanoparticles. While polymer-linked nanoparticles have been synthesized, their phase behavior has only been predicted for chemically specific interactions. We use integral equation theory to determine the structure and phase behavior of chemically isotropic polymer-linked nanoparticles at high densities. When each end of a linear polymer is grafted to a nanoparticle, we predict an entropy-driven microphase separation of locally segregated polymer-rich and nanoparticle-rich domains. The formation of these self-assembled structures is purely a consequence of the shape of the polymer-linked particle species. The depletion-driven demixing of ungrafted polymer-nanoparticle composites (with small amounts of nanoparticles) is enhanced as particle diameter (D) grows compared to the polymer radius of gyration (R). However, this study shows that for polymer-linked nanoparticle systems, the transition from a liquid to microphase separated state shifts to higher densities (i.e. is inhibited) as D/R increases. The transition volume fractions attain a unique value (of ∼0.69) at D/R ∼ 1.13. The repeating length scale (L*) is 1.4-2.2 times the size of the entire species (D + R). Surprisingly, L*/(D + R) is a non-monotonic function of the polymer radius of gyration. The repeating length scale also displays a remarkable scaling behavior, as a function of the particle diameter and the polymer density. Additionally, our study implies that two different mechanisms of transitioning to the microphase separated state are possible for these systems, which has important implications for the transition density and the kinds of structures formed.
已知聚合物和纳米粒子的混合物中存在熵驱动的相分离。虽然已经合成了聚合物连接的纳米粒子,但它们的相行为仅针对化学特异性相互作用进行了预测。我们使用积分方程理论来确定高浓度下化学各向同性聚合物连接的纳米粒子的结构和相行为。当线性聚合物的每一端都接枝到纳米粒子上时,我们预测会发生局部分离的聚合物富区和纳米粒子富区的熵驱动微相分离。这些自组装结构的形成纯粹是聚合物连接粒子种类形状的结果。与无接枝聚合物-纳米粒子复合材料(纳米粒子含量较少)相比,随着粒径(D)相对于聚合物回转半径(R)的增大,粒子的耗散驱动的去混合作用得到增强。然而,这项研究表明,对于聚合物连接的纳米粒子系统,从液相到微相分离状态的转变会随着 D/R 的增加而转移到更高的密度(即被抑制)。过渡体积分数在 D/R ∼ 1.13 时达到一个独特的值(约 0.69)。重复长度尺度(L*)是整个物种(D + R)大小的 1.4-2.2 倍。令人惊讶的是,L*/(D + R) 不是聚合物回转半径的单调函数。重复长度尺度也表现出显著的缩放行为,作为粒径和聚合物密度的函数。此外,我们的研究表明,对于这些系统,向微相分离状态的转变可能有两种不同的机制,这对转变密度和形成的结构类型具有重要意义。