Brazilian Nanotechnology National Laboratory (LNNano), CNPEM , 13083-970 Campinas, Brazil.
Institute of Chemistry (IQ), UNICAMP , 13083-970 Campinas, Brazil.
ACS Appl Mater Interfaces. 2017 Apr 5;9(13):11959-11966. doi: 10.1021/acsami.6b15646. Epub 2017 Mar 22.
A simple and fast fabrication method to create high-performance pencil-drawn electrochemical sensors is reported for the first time. The sluggish electron transfer observed on bare pencil-drawn surfaces was enhanced using two electrochemical steps: first oxidizing the surface and then reducing it in a subsequent step. The heterogeneous rate constant was found to be 5.1 × 10 cm s, which is the highest value reported so far for pencil-drawn surfaces. We mapped the origin of such performance by atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Our results suggest that the oxidation process leads to chemical and structural transformations on the electrode surface. As a proof-of-concept, we modified the pencil-drawn surface with Meldola's blue to electrocatalytically detect nicotinamide adenine dinucleotide (NADH). The electrochemical device exhibited the highest catalytic constant (1.7 × 10 L mol s) and the lowest detection potential for NADH reported so far in paper-based electrodes.
首次报道了一种简单快速的笔绘电化学传感器的制作方法。通过两个电化学步骤来增强在裸笔绘表面上观察到的缓慢电子转移:首先氧化表面,然后在后续步骤中还原它。发现非均相速率常数为 5.1×10cm s,这是迄今为止报道的笔绘表面的最高值。我们通过原子力显微镜、X 射线光电子能谱和拉曼光谱来绘制这种性能的起源。我们的结果表明,氧化过程导致电极表面的化学和结构转变。作为概念验证,我们用 Meldola 的蓝色修饰笔绘表面以电催化检测烟酰胺腺嘌呤二核苷酸(NADH)。电化学装置表现出迄今为止在基于纸张的电极中报道的最高 NADH 催化常数(1.7×10Lmol s)和最低检测电位。