Eaton Jeffrey W, Bao Le
aDepartment of Infectious Disease Epidemiology, Imperial College London, London, UK bDepartment of Statistics, the Pennsylvania State University, University Park, Pennsylvania, USA.
AIDS. 2017 Apr;31 Suppl 1(Suppl 1):S61-S68. doi: 10.1097/QAD.0000000000001419.
The aim of the study was to propose and demonstrate an approach to allow additional nonsampling uncertainty about HIV prevalence measured at antenatal clinic sentinel surveillance (ANC-SS) in model-based inferences about trends in HIV incidence and prevalence.
Mathematical model fitted to surveillance data with Bayesian inference.
We introduce a variance inflation parameter (Equation is included in full-text article.)that accounts for the uncertainty of nonsampling errors in ANC-SS prevalence. It is additive to the sampling error variance. Three approaches are tested for estimating (Equation is included in full-text article.)using ANC-SS and household survey data from 40 subnational regions in nine countries in sub-Saharan, as defined in UNAIDS 2016 estimates. Methods were compared using in-sample fit and out-of-sample prediction of ANC-SS data, fit to household survey prevalence data, and the computational implications.
Introducing the additional variance parameter (Equation is included in full-text article.)increased the error variance around ANC-SS prevalence observations by a median of 2.7 times (interquartile range 1.9-3.8). Using only sampling error in ANC-SS prevalence (Equation is included in full-text article.), coverage of 95% prediction intervals was 69% in out-of-sample prediction tests. This increased to 90% after introducing the additional variance parameter (Equation is included in full-text article.). The revised probabilistic model improved model fit to household survey prevalence and increased epidemic uncertainty intervals most during the early epidemic period before 2005. Estimating (Equation is included in full-text article.)did not increase the computational cost of model fitting.
We recommend estimating nonsampling error in ANC-SS as an additional parameter in Bayesian inference using the Estimation and Projection Package model. This approach may prove useful for incorporating other data sources such as routine prevalence from Prevention of mother-to-child transmission testing into future epidemic estimates.
本研究的目的是提出并展示一种方法,以便在基于模型的关于艾滋病毒发病率和流行率趋势的推断中,考虑产前诊所哨点监测(ANC-SS)所测艾滋病毒流行率的额外非抽样不确定性。
采用贝叶斯推断对监测数据进行数学建模。
我们引入一个方差膨胀参数(完整方程见全文),该参数考虑了ANC-SS流行率中非抽样误差的不确定性。它与抽样误差方差相加。使用来自撒哈拉以南九个国家40个次国家级地区的ANC-SS和家庭调查数据,对三种估计方法(完整方程见全文)进行了测试,如联合国艾滋病规划署2016年估计所定义。使用样本内拟合和ANC-SS数据的样本外预测、对家庭调查流行率数据的拟合以及计算影响对方法进行了比较。
引入额外的方差参数(完整方程见全文)使ANC-SS流行率观测值周围的误差方差中位数增加了2.7倍(四分位间距为1.9 - 3.8)。在样本外预测测试中,仅使用ANC-SS流行率中的抽样误差(完整方程见全文)时,95%预测区间的覆盖率为69%。引入额外的方差参数(完整方程见全文)后,这一覆盖率增加到了90%。修订后的概率模型改善了对家庭调查流行率的模型拟合,并且在2005年之前的早期流行期间,疫情不确定性区间增加最多。估计(完整方程见全文)并未增加模型拟合的计算成本。
我们建议将ANC-SS中的非抽样误差作为一个额外参数,在使用估计与预测软件包模型进行贝叶斯推断时进行估计。这种方法可能有助于将其他数据源(如母婴传播预防检测的常规流行率)纳入未来的疫情估计中。