Dias Raquel, Manny Austin, Kolaczkowski Oralia, Kolaczkowski Bryan
Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ.
Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL.
Mol Biol Evol. 2017 Jun 1;34(6):1429-1444. doi: 10.1093/molbev/msx090.
Reconstruction of ancestral protein sequences using phylogenetic methods is a powerful technique for directly examining the evolution of molecular function. Although ancestral sequence reconstruction (ASR) is itself very efficient, downstream functional, and structural studies necessary to characterize when and how changes in molecular function occurred are often costly and time-consuming, currently limiting ASR studies to examining a relatively small number of discrete functional shifts. As a result, we have very little direct information about how molecular function evolves across large protein families. Here we develop an approach combining ASR with structure and function prediction to efficiently examine the evolution of ligand affinity across a large family of double-stranded RNA binding proteins (DRBs) spanning animals and plants. We find that the characteristic domain architecture of DRBs-consisting of 2-3 tandem double-stranded RNA binding motifs (dsrms)-arose independently in early animal and plant lineages. The affinity with which individual dsrms bind double-stranded RNA appears to have increased and decreased often across both animal and plant phylogenies, primarily through convergent structural mechanisms involving RNA-contact residues within the β1-β2 loop and a small region of α2. These studies provide some of the first direct information about how protein function evolves across large gene families and suggest that changes in molecular function may occur often and unassociated with major phylogenetic events, such as gene or domain duplications.
使用系统发育方法重建祖先蛋白质序列是直接研究分子功能进化的一项强大技术。尽管祖先序列重建(ASR)本身效率很高,但为了确定分子功能变化的时间和方式而进行的下游功能和结构研究通常成本高昂且耗时,目前限制了ASR研究只能考察相对少量的离散功能转变。因此,我们几乎没有关于分子功能如何在大型蛋白质家族中进化的直接信息。在此,我们开发了一种将ASR与结构和功能预测相结合的方法,以有效地研究跨越动植物的双链RNA结合蛋白(DRB)大家族中配体亲和力的进化。我们发现,DRB的特征性结构域结构——由2 - 3个串联的双链RNA结合基序(dsrm)组成——在动物和植物早期谱系中独立出现。在动植物系统发育过程中,单个dsrm与双链RNA结合的亲和力似乎经常增加和降低,主要是通过涉及β1 - β2环内RNA接触残基和α2小区域的趋同结构机制。这些研究提供了一些关于蛋白质功能如何在大型基因家族中进化的首批直接信息,并表明分子功能的变化可能经常发生,且与主要的系统发育事件(如基因或结构域重复)无关。